The Journal of Contemporary Dental Practice

Register      Login

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue

Online First

Archive
Related articles

VOLUME 18 , ISSUE 11 ( November, 2017 ) > List of Articles

REVIEW ARTICLE

Evolution of Nickel–titanium Alloys in Endodontics

Sukumaran Anil, Prasanna Neelakantan, Wadih Nassif

Citation Information : Anil S, Neelakantan P, Nassif W. Evolution of Nickel–titanium Alloys in Endodontics. J Contemp Dent Pract 2017; 18 (11):1090-1096.

DOI: 10.5005/jp-journals-10024-2181

Published Online: 01-03-2017

Copyright Statement:  Copyright © 2017; The Author(s).


Abstract

Clinical significance

Dentists are mostly clinicians rather than engineers. With the advances in instrumentation design and alloys, they have an obligation to deal more intimately with engineering consideration to not only take advantage of their possibilities but also acknowledge their limitations.

How to cite this article

Ounsi HF, Nassif W, Grandini S, Salameh Z, Neelakantan P, Anil S. Evolution of Nickel–titanium Alloys in Endodontics. J Contemp Dent Pract 2017;18(11):1090-1096.


PDF Share
  1. An initial investigation of the bending and torsional properties of Nitinol root canal files. J Endod 1988 Jul;14(7):346-351.
  2. Fabrication of shape memory alloy parts. In: Yoneyama T, Miyazaki S, editors. Shape memory alloys for biomedical applications. Cambridge: Elsevier; 2009. p. 86-100.
  3. Materials science for dentistry. Cambridge (UK): Elsevier; 2009.
  4. Phase diagrams of binary nickel alloys. Materials Park (OH): ASM International; 1991. p. 394.
  5. Mechanical properties of cast Ti-6Al-4V-XCu alloys. J Oral Rehabil 2004 Nov;31(11):1109-1114.
  6. Mechanical behaviour associated with the premartensitic rhombohedral-phase transition in a Ti50Ni47Fe3 alloy. Philos Mag A 1985;50(3):393-408.
  7. Deformation and transition behavior associated with theR-phase in Ti-Ni alloys. Metal Trans A 1986 Jan;17(1):53-63.
  8. An overview of nickel-titanium alloys used in dentistry. Int Endod J 2000 Jul;33(4):297-310.
  9. Metallurgical characterization of M-Wire nickel-titanium shape memory alloy used for endodontic rotary instruments during low-cycle fatigue. J Endod 2012 Jan;38(1):105-107.
  10. Differential scanning calorimetric studies of nickel titanium rotary endodontic instruments. J Endod 2002 Aug;28(8):567-572.
  11. Phase transformation behaviour and bending property of twisted nickel-titanium endodontic instruments. Int Endod J 2011 Mar;44(3):253-258.
  12. ; Miyazaki, S. Superelastic Ni-Ti alloys in orthodontics. Engineering aspects of shape memory alloys. London: Butterworth-Heinemann; 1990. p. 452.
  13. Quantitative and qualitative elemental analysis of different nickel-titanium rotary instruments by using scanning electron microscopy and energy dispersive spectroscopy. J Endod 2008 Jan;34(1):53-55.
  14. ; Boyer, R.; Collings, E. Materials properties handbook: titanium alloys. Materials Park (OH): ASM International; 1993.
  15. Fabrication of shape memory TiNi foils via Ti/Ni ultrafine laminates. Scr Mater 2003;48(5):489-494.
  16. Effect of clinical use on the cyclic fatigue resistance of ProTaper nickel-titanium rotary instruments. J Endod 2007 Jun;33(6):737-741.
  17. Processing and microstructure of TiNi SMA strips prepared by cold roll-bonding and annealing of multilayer. Mater Sci Eng A 2005 Nov;408(1):182-189.
  18. Fundamental aspects of hydrogen embrittlement of iron. Mater Jpn 1994;33(7):914-921.
  19. Hydrogen embrittlement of nickel-titanium alloy in biological environment. Metal Mater Trans A 2002 Mar;33(3):495-501.
  20. Thermodynamic analysis of the martensitic transformation in NiTi-II. Effect of transformation cycling. Acta Metal Mater 1994;42(7):2407-2413.
  21. Thermal processing of polycrystalline NiTi shape memory alloys. Mater Sci Eng A 2005 Sep;405(1):34-49.
  22. Alteration in the inherent metallic and surface properties of nickel-titanium root canal instruments to enhance performance, durability and safety: a focused review. Int Endod J 2012 Feb;45(2):113-128.
  23. Current challenges and concepts of the thermomechanical treatment of nickel-titanium instruments. J Endod 2013 Feb;39(2):163-172.
  24. An initial investigation on torsional properties of nickel-titanium instruments produced with a new manufacturing method. Aust Endod J 2009 Aug;35(2):70-72.
  25. Fatigue resistance of engine-driven rotary nickel-titanium instruments produced by new manufacturing methods. J Endod 2008 Aug;34(8):1003-1005.
  26. Cyclic fatigue analysis of a new generation of nickel titanium rotary instruments. J Endod 2009 Mar;35(3):401-403.
  27. Cyclic fatigue and fracture characteristics of ground and twisted nickel-titanium rotary files. J Endod 2010 Jan;36(1):147-152.
  28. Mechanical properties of a new and improved nickel-titanium alloy for endodontic use: an evaluation of file flexibility. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008 Jun;105(6):798-800.
  29. Stiffness and frictional resistance of a superelastic nickel-titanium orthodontic wire with low-stress hysteresis. Am J Orthod Dentofacial Orthop 2007 May;131(5):578.e12-578.e18.
  30. Influence of different manufacturing methods on the cyclic fatigue of rotary nickel-titanium endodontic instruments. J Endod 2011 Nov;37(11):1553-1557.
  31. Resistance to cyclic fatigue failure of a new endodontic rotary file. J Endod 2012 May;38(5):667-669.
  32. Mechanical properties of controlled memory and superelastic nickel-titanium wires used in the manufacture of rotary endodontic instruments. J Endod 2012 Nov;38(11):1535-1540.
  33. Metallurgical characterization of controlled memory wire nickel-titanium rotary instruments. J Endod 2011 Nov;37(11):1566-1571.
  34. Metallurgical characterization of a new nickel-titanium wire for rotary endodontic instruments. J Endod 2009 Nov;35(11):1589-1593.
  35. Effects of raw material and rotational speed on the cyclic fatigue of ProFile Vortex rotary instruments. J Endod 2010 Jul;36(7):1205-1209.
  36. Effect of heat treatment on transformation temperatures and bending properties of nickel-titanium endodontic instruments. Int Endod J 2009 Jul;42(7):621-626.
  37. Differential scanning calorimetric studies of nickel-titanium rotary endodontic instruments after simulated clinical use. J Endod 2002 Nov;28(11):774-778.
  38. Micro-XRD and temperature-modulated DSC investigation of nickel-titanium rotary endodontic instruments. Dent Mater 2009 Oct;25(10):1221-1229.
  39. Thermodynamic analysis of the martensitic transformation in NiTi-I. Effect of heat treatment on transformation behaviour. Acta Metal Mater 1994 Jul;42(7):2401-2406.
  40. The self-adjusting file (SAF). Part 1: respecting the root canal anatomy–a new concept of endodontic files and its implementation. J Endod 2010 Apr;36(4):679-690.
  41. An overview of the mechanical properties of nickel-titanium endodontic instruments. Endod Top 2013 Sep;29(1):42-54.
  42. An in vitro assessment of the physical properties of novel Hyflex nickel-titanium rotary instruments. Int Endod J 2012 Nov;45(11):1027-1034.
  43. Comparison of two techniques for assessing the shaping efficacy of repeatedly used nickel-titanium rotary instruments. J Endod 2011 Jun;37(6):847-850.
  44. HyFlex nickel-titanium rotary instruments after clinical use: metallurgical properties. Int Endod J 2013 Aug;46(8):720-729.
  45. Evidence for reduced fatigue resistance of contemporary rotary instruments exposed to body temperature. J Endod 2016 May;42(5):782-787.
  46. Fracture resistance of electropolished rotary nickel-titanium endodontic instruments. J Endod 2007 Oct;33(10):1212-1216.
  47. Effects of electropolishing surface treatment on the cyclic fatigue resistance of BioRace nickel-titanium rotary instruments. J Endod 2010 Oct;36(10):1653-1657.
  48. Influence of electrochemical polishing on the mechanical properties of K3 nickel-titanium rotary instruments. J Endod 2008 Dec;34(12):1533-1536.
  49. Effect of electropolishing ProFile nickel-titanium rotary instruments on cyclic fatigue resistance, torsional resistance, and cutting efficiency. J Endod 2008 Feb;34(2):190-193.
  50. Does electropolishing improve the low-cycle fatigue behavior of a nickel-titanium rotary instrument in hypochlorite? J Endod 2007 Oct;33(10):1217-1221.
  51. The effect of electropolishing on torque and force during simulated root canal preparation with ProTaper shaping files. J Endod 2009 Jan;35(1):102-106.
  52. Influence of surface roughness on the fatigue life of nickel-titanium rotary endodontic instruments. J Endod 2016 Jun;42(6):965-968.
  53. Critical overview of Nitinol surfaces and their modifications for medical applications. Acta Biomater 2008 May;4(3):447-467.
  54. Effect of physical vapor deposition on cutting efficiency of nickel-titanium files. J Endod 2002 Dec;28(12):800-802.
  55. Wear of nickel-titanium endodontic instruments evaluated by scanning electron microscopy: effect of ion implantation. J Endod 2001 Sep;27(9):588-592.
  56. The effect of surface treatments of nickel-titanium files on wear and cutting efficiency. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2000 Mar;89(3):363-368.
  57. Depositions of nitrogen on NiTi instruments. J Endod 2002 Jul;28(7):497-500.
  58. Application of plasma immersion ion implantation for surface modification of nickel-titanium rotary instruments. Dent Mater J 2007 Jul;26(4):467-473.
  59. Wear resistance of nickel-titanium endodontic files after surface treatment. J Mater Sci Mater Med 2008 Oct;19(10):3273-3277.
  60. The effect of argon and nitrogen ion implantation on nickel-titanium rotary instruments. J Endod 2009 Nov;35(11):1558-1562.
  61. Enhanced surface hardness by boron implantation in Nitinol alloy. J Endod 1996 Oct;22(10):543-546.
  62. Effect of cryogenic treatment on nickel-titanium endodontic instruments. Int Endod J 2005 Jun;38(6):364-371.
  63. Influence of deep dry cryogenic treatment on cutting efficiency and wear resistance of nickel-titanium rotary endodontic instruments. J Endod 2007 Nov;33(11):1355-1358.
  64. Effect of dry cryogenic treatment on Vickers hardness and wear resistance of new martensitic shape memory nickel-titanium alloy. Eur J Dent 2015 Oct-Dec;9(4):513-517.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.