Aim: To evaluate, in vitro, the mini-implant surface changes and the release of ions after immersion in artificial saliva during follow-up of 60 and 120 days.
Materials and methods: As for the surface features, examined in a scanning electron microscope (SEM), before and after immersion in artificial saliva, there was a rough and uneven surface, suggestive of corrosion areas for the two trademarks evaluated after 120 days of immersion. The extracts generated in artificial saliva analysis were submitted to energy dispersive spectroscopy to identify the solid corrosion products produced on the surfaces of miniscrews.
Results: Both SIN miniscrews and Neodent brands were observed to release minimal quantities of silver ions, chromium, iron, nickel, titanium, and vanadium. Regarding titanium, this index varied from 88.84% in the control group of Neodent brand, and 91.29% in the control group of SIN brand. For the aluminum content, the quantities ranged from 4.91% in group immersed for 60 days in Neodent brand to 8.71% for the SIN control group. Considering vanadium, the index ranged from 2.65% in the group immersed for 120 days to 4.53% in the control group, both for Neodent brand. Statistically significant differences in iron ion were observed between the control group and the miniscrews brand SIN after 60 and 120 days and for Neodent after 60 days of immersion. The titanium ions suffered statistically significant decrease for both brands after 120 days of storage when compared with the control group.
Conclusion: The studied miniscrews showed results consistent with the biosafety of alloys for use, in vivo.
Clinical significance: The knowledge of the physical/chemical state of corrosion products released in the oral cavity is very important for the toxicological assessment of metal alloys used in dental miniscrews.
Xavier SP, Carvalho PS, Beloti MM, Rosa AL. Response of rat bone marrow cells to commercially pure titanium submitted to different surface treatments. J Dent 2003 Mar;31(3):173-180.
Chandar S, Kotian R, Madhyastha P, Kabekkodu SP, Rao P. In vitro evaluation of cytotoxicity and corrosion behavior of commercially pure titanium and Ti-6Al-4V alloy for dental implants. J Indian Prosthodont Soc 2017 Jan-Mar;17(1):35-40.
Cheng Y, Hu J, Zhang C, Wang Z, Hao Y, Gao B. Corrosion behavior of novel Ti-24Nb-4Zr-7.9Sn alloy for dental implant applications in vitro. J Biomed Mater Res B Appl Biomater 2013 Feb;101(2):287-294.
Roberts WE, Helm FR, Marshall KJ, Gongloff RK. Rigid endosseous implants for orthodontic and orthopedic anchorage. Angle Orthod 1989 Winter;59(4):247-256.
Alves CB, Segurado MN, Dorta MC, Dias FR, Lenza MG, Lenza MA. Evaluation of cytotoxicity and corrosion resistance of orthodontic miniscrews. Dental Press J Orthod 2016 Sep-Oct;21(5):39-46.
Antoszewska-Smith J, Sarul M, £yczek J, Konopka T, Kawala B. Effectiveness of orthodontic miniscrew implants in anchorage reinforcement during en-masse retraction: a systematic review and meta-analysis. Am J Orthod Dentofacial Orthop 2017 Mar;151(3):440-455.
Park HS, Bae SM, Kyung HM, Sung JH. Micro-implant anchorage for treatment of skeletal Class I bialveolar protrusion. J Clin Orthod 2001 Jul;35(7):417-422.
Consolaro A. Miniscrews and miniplates generate subabsolute and absolute anchorage. Dental Press J Orthod 2014 May-Jun;19(3):20-23.
Chang C, Liu SS, Roberts WE. Primary failure rate for 1680 extra-alveolar mandibular buccal shelf mini-screws placed in movable mucosa or attached gingiva. Angle Orthod 2015 Nov;85(6):905-910.
Consolaro A, Sant'ana E, Francischone CE Jr, Consolaro MF, Barbosa BA. Mini-implantes: pontos consensuais e questionamentos sobre o seu uso clinico. Rev Dent Press Ortodon Ortop Facial 2008 Sep-Oct;13(5):20-27.
Kuroda S, Sugawara Y, Deguchi T, Kyung HM, Takano- Yamamoto T. Clinical use of miniscrew implants as orthodontic anchorage: success rates and postoperative discomfort. Am J Orthod Dentofacial Orthop 2007 Jan;131(1):9-15.
Marigo G, Marigo M, Marigo M. Avaliaçāo “in vitro” da liberaçāo de íons metálicos de mini-implantes ortodônticos (Ti6AI4V) submetidos a processo corrosivo. Orthod Sci Pract 2010;3(9):16-24.
Luft S, Keilig L, Jager A, Bourauel C. In-vitro evaluation of the corrosion behavior of orthodontic brackets. Orthod Craniofac Res 2009 Feb;12(1):43-51.
Bortagaray MA, Ibanez CA, Ibanez MC, Ibanez JC. Corrosion analysis of an experimental noble alloy on commercially pure titanium dental implants. Open Dent J 2016 Sep;10: 486-496.
Ferguson AB Jr, Laing PG, Hodge ES. The ionization of metal implants in living tissues. J Bone Joint Surg Am 1960 Jan;42-A:77-90.
Faria AC, Rodrigues RC, Antunes RP, de Mattos Mda G, Rosa AL, Ribeiro RF. Effect of temperature variation on the cytotoxicity of cast dental alloys and commercially pure titanium. J Appl Oral Sci 2009 Sep-Oct;17(5):421-426.
Kuphasuk C, Oshida Y, Andres CJ, Hovijitra ST, Barco MT, Brown DT. Electrochemical corrosion of titanium and titanium based alloys. J Prosthet Dent 2001 Feb;85(2):195-202.
Hwang CJ, Shin JS, Cha JY. Metal release from simulated fixed orthodontic appliances. Am J Orthod Dentofacial Orthop 2001 Oct;120(4):383-391.
International Standard Organization. Biological evaluation of medical devices.part 5. Tests for in vitro cytotoxicity. Geneva: ISO; 1999.
Gross JM, Nascimento GG, Araujo VC, Bonecker M, Furuse C. Miniscrews for orthodontic anchorage: surface analysis after redrilling and sterilization.an in vitro study. J Contemp Dent Pract 2016 Apr;17(4):300-305.
Saiki M, Takata MK, Kramarski S, Borelli A. Instrumental neutron activation analysis of rib bone samples and of bone reference materials. Biol Trace Elem Res 1999 Feb;71-72: 41-46.
Locci P, Lilli C, Marinucci L, Calvitti M, Belcastro S, Bellocchio S, Staffolani N, Guerra M, Becchetti E. In vitro cytotoxic effects of orthodontic appliances. J Biomed Mater Res 2000 Sep;53(5):560-567.
House K, Sernetz F, Dymock D, Sandy JR, Ireland AJ. Corrosion of orthodontic appliances.should we care? Am J Orthod Dentofacial Orthod 2008 Apr;133(4):584-592.
International Standard Organization. Biological evaluation of medical devices.part 5. General biocompatibility testing considerations. Geneva: ISO; 2016.
Chaturvedi TP. Corrosion of orthodontic brackets in different spices: in vitro study. Indian J Dent Res 2014 Sep-Oct;25(5):630-634.
Souza KS, Jaimes RF, Rogero SO, Nascente PA, Agostinho SM. In vitro cytotoxicity test and surface characterization of CoCrW alloy in artificial saliva solution for dental applications. Braz Dent J 2016 Mar-Apr;27(2):181-186.
Houb-Dine A, Bahije L, Oualalou Y, Benyahia H, Zaoui F. Topographic and chemical surface modifications to metal brackets after a period in the mouth. Int Orthod 2017 Sep;15(3):515-528.
Mikulewicz M, Chojnacka K, Wo.niak B, Downarowicz P. Release of metal ions from orthodontic appliances: an in vitro study. Biol Trace Elem Res 2012 May;146(2):272-280.
Mikulewicz M, Chojnacka K. Release of metal ions from orthodontic appliances by in vitro studies: a systematic literature review. Biol Trace Elem Res 2011 Mar;139(3):241-256.
Sridhar S, Wilson TG Jr, Palmer KL, Valderrama P, Mathew MT, Prasad S, Jacobs M, Gindri IM, Rodrigues DC. In vitro investigation of the effect of oral bacteria in the surface oxidation of dental implants. Clin Implant Dent Relat Res 2015 Oct;17(Suppl 2):e562-e575.
Mikulewicz M, Chojnacka K, Wo.owiec P. Release of metal ions from fixed orthodontic appliance: an in vitro study in continuous flow system. Angle Orthod 2014 Jan;84(1):140-148.
Senkutvan RS, Jacob S, Charles A, Vadgaonkar V, Jatol-Tekade S, Gangurde P. Evaluation of nickel ion release from various orthodontic arch wires: an in vitro study. J Int Soc Prev Community Dent 2014 Jan-Apr;4(1):12-16.
Sheibaninia A. Effect of thermocycling on nickel release from orthodontic arch wires: an in vitro study. Biol Trace Elem Res 2014 Dec;162(1-3):353-359.
Silverstein J, Barreto O, Franca R. Miniscrews for orthodontic anchorage: nanoscale chemical surface analyses. Eur J Orthod 2016 Apr;38(2):146-153.
Iijima M, Muguruma T, Kawaguchi M, Yasuda Y, Mizoguchi I. In vivo degradation of orthodontic miniscrew implants: surface analysis of as-received and retrieved specimens. J Mater Sci Mater Med 2015 Feb;26(2):71.
Kao CT, Ding SJ, Chen YC, Huang TH. The anticorrosion ability of titanium nitride (TiN) plating on an orthodontic metal bracket and its biocompatibility. J Biomed Mater Res 2002 Oct;63(6):786-792.
Kocijan A, Milosev I, Pihlar B. The influence of complexing agent and proteins on the corrosion of stainless steels and their metal components. J Mater Sci Mater Med 2003 Jan;14(1):69-77.