The Journal of Contemporary Dental Practice

Register      Login



Volume / Issue

Online First

Related articles

VOLUME 20 , ISSUE 10 ( October, 2019 ) > List of Articles


Ridge Preservation Using an Innovative Enzyme-deantigenic Equine Bone Paste: A Case Report with 36-month Follow-up

Danilo Alessio Di Stefano, Paolo Arosio, Lorenzo Cinci, Laura Pieri

Keywords : Bone formation, Bone paste, Post-extractive sockets, Ridge preservation, Xenograft

Citation Information : Stefano DA, Arosio P, Cinci L, Pieri L. Ridge Preservation Using an Innovative Enzyme-deantigenic Equine Bone Paste: A Case Report with 36-month Follow-up. J Contemp Dent Pract 2019; 20 (10):1229-1234.

DOI: 10.5005/jp-journals-10024-2664

License: CC BY-NC 4.0

Published Online: 01-12-2018

Copyright Statement:  Copyright © 2019; The Author(s).


Aim: This study aimed to report a successful clinical, histological, and histomorphometric outcome of a novel equine-derived bone paste for a ridge preservation surgery involving a single post-extractive socket. Background: After tooth avulsion, unless the implant position is not carried out straightforwardly, the alveolar process undergoes resorption: to limit it, post-extractive sockets may be grafted according to the ridge preservation principles. Grafting materials should display proper biological properties and optimal handling characteristics. Bone pastes may facilitate grafting operations, avoid granules’ dispersion, and maximize the contact of the graft with the surrounding bone. An innovative equine-derived bone paste has been recently introduced on the market, but its use has never been documented in the medical literature. Case description: This report describes the treatment of a patient who received the equine-derived bone paste in a post-extractive socket to allow the preservation of the alveolar ridge and was later rehabilitated with a crown supported by a single implant. Conclusion: The handling properties of the equine-derived bone paste were excellent. At the 36-month follow-up, the peri-implant bone levels had been maintained, with the implant being successful according to the Albrektsson and Zarb criteria. Histologic outcome showed that the bone paste was fully biocompatible; histomorphometric analysis showed that a significant amount of newly formed bone could be observed in the grafted socket. Clinical significance: Alveolar ridge preservation using bone grafts is a well-known approach, yet there is still no agreement about which bone graft might be considered the most suitable for this indication. The novel equine-derived bone paste used in the present study appears a promising option for effective socket preservation and may promote secondary intention healing.

  1. Van der Weijden F, Dell'Acqua F, et al. Alveolar bone dimensional changes of post-extraction sockets in humans: a systematic review. J Clin Periodontol 2009 Dec;36(12):1048–1058. DOI: 10.1111/j.1600-051X.2009.01482.x.
  2. Araújo MG, Lindhe J. Ridge alterations following tooth extraction with and without flap elevation: an experimental study in the dog. Clin Oral Implants Res 2009 Jun;20(6):545–549. DOI: 10.1111/j.1600-0501.2008.01703.x.
  3. De Risi V, Clementini M, et al. Alveolar ridge preservation techniques: a systematic review and meta-analysis of histological and histomorphometrical data. Clin Oral Implants Res 2015 Jan;26(1): 50–68. DOI: 10.1111/clr.12288.
  4. Misch CM. Maxillary autogenous bone grafting. Oral Maxillofac Surg Clin North Am 2011 May;23(2):229–238. DOI: 10.1016/j.coms. 2011.01.003.
  5. Nkenke E, Weisbach V, et al. Morbidity of harvesting of bone grafts from the iliac crest for preprosthetic augmentation procedures: a prospective study. Int J Oral Maxillofac Surg 2004 Mar;33(2):157–163. DOI: 10.1054/ijom.2003.0465.
  6. Esposito M, Grusovin MG, et al. Interventions for replacing missing teeth: horizontal and vertical bone augmentation techniques for dental implant treatment. Cochrane Database Syst Rev 2009 Oct 7(4):CD003607. DOI: 10.1002/14651858.CD003607.pub4.
  7. Aerssens J, Boonen S, et al. Interspecies differences in bone composition, density, and quality: potential implications for in vivo bone research. Endocrinology 1998 Feb;139(2):663–670. DOI: 10.1210/endo.139.2.5751.
  8. Baldini N, De Sanctis M, et al. Deproteinized bovine bone in periodontal and implant surgery. Dent Mater 2011 Jan;27(1):61–70. DOI: 10.1016/
  9. Jensen SS, Terheyden H. Bone augmentation procedures in localized defects in the alveolar ridge: clinical results with different bone grafts and bone-substitute materials. Int J Oral Maxillofac Implants 2009;24(Suppl):218–236.
  10. Benke D, Olah A, et al. Protein-chemical analysis of Bio-Oss bone substitute and evidence on its carbonate content. Biomaterials 2001 May;22(9):1005–1012. DOI: 10.1016/S0142-9612(00)00323-9.
  11. Felice P, Piana L, et al. Vertical ridge augmentation of an atrophic posterior mandible with an inlay technique and cancellous equine bone block: a case report. Int J Periodontics Restorative Dent 2013 Mar–Apr;33(2):159–166. DOI: 10.11607/prd.1098.
  12. Pistilli R, Signorini L, et al. Case of severe bone atrophy of the posterior maxilla rehabilitated with blocks of equine origin bone: histological results. Implant Dent 2013 Feb;22(1):8–15. DOI: 10.1097/ID.0b013e3182777239.
  13. Di Stefano DA, Andreasi Bassi M, et al. Treatment of a bone defect consequent to the removal of a periapical cyst with equine bone and equine membranes: clinical and histological outcome. Minerva Stomatol 2012 Nov–Dec;61(11–12):477–490.
  14. Artese L, Piattelli A, et al. Sinus lift with autologous bone alone or in addition to equine bone: an immunohistochemical study in man. Implant Dent 2011 Oct;20(5):383–388. DOI: 10.1097/ID.0b013e3182310b3d.
  15. De Angelis N, Scivetti M. Lateral ridge augmentation using an equine flex bone block infused with recombinant human platelet-derived growth factor BB: a clinical and histologic study. Int J Periodontics Restorative Dent 2011 Jul–Aug;31(4):383–388.
  16. Ludovichetti M, Di Stefano DA, et al. Vertical ridge augmentation using a flexible heterologous cortical bone sheet: three-year follow-up. Int J Periodontics Restorative Dent 2011 Jul–Aug;31(4): 401–407.
  17. Di Stefano DA, Artese L, et al. Alveolar ridge regeneration with equine spongy bone: a clinical, histological, and immunohistochemical case series. Clin Implant Dent Relat Res 2009 Jun;11(2):90–100. DOI: 10.1111/j.1708-8208.2008.00104.x.
  18. Stievano D, Di Stefano A, et al. Maxillary sinus lift through heterologous bone grafts and simultaneous acid-etched implants placement. Five year follow-up. Minerva Chir 2008 Apr;63(2):79–91.
  19. Santini S, Barbera P, et al. Equine-derived bone substitutes in orthopedics and traumatology: authors’ experience. Minerva Chir 2011 Feb;66(1):63–72.
  20. Giannoni P, Villa F, et al. Rheological properties, biocompatibility and in vivo performance of new hydrogel-based bone fillers. Biomater Sci 2016 Nov 18;4(11):1691–1703. DOI: 10.1039/C6BM00478D.
  21. Albrektsson T, Zarb G, et al. The long-term efficacy of currently used dental implants: a review and proposed criteria of success. Int J Oral Maxillofac Implants 1986;1(1):11–25.
  22. Vignoletti F, Matesanz P, et al. Surgical protocols for ridge preservation after tooth extraction. A systematic review. Clin Oral Implants Res 2012 Feb;23(Suppl 5):22–38. DOI: 10.1111/j.1600-0501.2011.02331.x.
  23. Atieh MA, Alsabeeha NH, et al. Interventions for replacing missing teeth: alveolar ridge preservation techniques for dental implant site development. Cochrane Database Syst Rev 2015 May 28(5):CD010176. DOI: 10.1002/14651858.CD010176.pub2.
  24. Iocca O, Farcomeni A, et al. Alveolar ridge preservation after tooth extraction: a Bayesian Network meta-analysis of grafting materials efficacy on prevention of bone height and width reduction. J Clin Periodontol 2017 Jan;44(1):104–114. DOI: 10.1111/jcpe. 12633.
  25. Di Stefano DA, Gastaldi G, et al. Histomorphometric Comparison of Enzyme-Deantigenic Equine Bone and Anorganic Bovine Bone in Sinus Augmentation: A Randomized Clinical Trial with 3-Year Follow-Up. Int J Oral Maxillofac Implants 2015 Sept–Oct; 30(5):1161–1167. DOI: 10.11607/jomi.4057.
  26. Di Stefano DA, Gastaldi G, et al. Bone Formation Following Sinus Augmentation with an Equine-Derived Bone Graft: A Retrospective Histologic and Histomorphometric Study with 36-Month Follow-up. Int J Oral Maxillofac Implants 2016 Mar–Apr;31(2):406–412. DOI: 10.11607/jomi.4373.
  27. Perrotti V, Nicholls BM, et al. Human osteoclast formation and activity on an equine spongy bone substitute. Clin Oral Implants Res 2009 Jan;20(1):17–23. DOI: 10.1111/j.1600-0501.2008.01608.x.
  28. Liu G, Hu YY, et al. Effect of type I collagen on the adhesion, proliferation, and osteoblastic gene expression of bone marrow-derived mesenchymal stem cells. Chin J Traumatol 2004 Dec;7(6): 358–362.
  29. Mizuno M, Fujisawa R, et al. Type I collagen-induced osteo-blastic differentiation of bone-marrow cells mediated by collagen-alpha2beta1 integrin interaction. J Cell Physiol 2000 Aug; 184(2):207–213. DOI: 10.1002/1097-4652(200008)184:2<207::AID-JCP8 >3.0.CO;2-U.
  30. Regazzoni C, Winterhalter KH, et al. Type I collagen induces expression of bone morphogenetic protein receptor type II. Biochem Biophys Res Commun 2001 May 4;283(2):316–322. DOI: 10.1006/bbrc.2001.4813.
  31. Green J, Schotland S, et al. Cell-matrix interaction in bone: type I collagen modulates signal transduction in osteoblast-like cells. Am J Physiol 1995 May;268(5 Pt 1):C1090–C1103. DOI: 10.1152/ajpcell.1995.268.5.C1090.
  32. Grinnell F, Fukamizu H, et al. Collagen processing, crosslinking, and fibril bundle assembly in matrix produced by fibroblasts in long-term cultures supplemented with ascorbic acid. Exp Cell Res 1989 Apr;181(2):483–491. DOI: 10.1016/0014-4827(89)90105-5.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.