The Journal of Contemporary Dental Practice

Register      Login



Volume / Issue

Online First

Related articles

VOLUME 20 , ISSUE 11 ( November, 2019 ) > List of Articles


Evaluation of In Vitro Cytotoxicity of Heat-cure Denture Base Resin Processed with a Dual-reactive Cycloaliphatic Monomer

Suma Karthigeyan, SreeVarun Murugesan, Balu Kandasamy, Devaki Veeramalai, Devi Natesan

Keywords : Cell viability, Cycloaliphatic monomer, Cytotoxicity, Modified monomer

Citation Information : Karthigeyan S, Murugesan S, Kandasamy B, Veeramalai D, Natesan D. Evaluation of In Vitro Cytotoxicity of Heat-cure Denture Base Resin Processed with a Dual-reactive Cycloaliphatic Monomer. J Contemp Dent Pract 2019; 20 (11):1279-1285.

DOI: 10.5005/jp-journals-10024-2688

License: CC BY-NC 4.0

Published Online: 01-11-2019

Copyright Statement:  Copyright © 2019; Jaypee Brothers Medical Publishers (P) Ltd.


Aim: The aim of this study is to evaluate cytotoxicity of tricyclodecane dimethanol diacrylate (TCDDMDA) when added to conventional heat-cure methyl methacrylate (MMA) monomer at 10% and 20% (v/v) concentrations. Materials and methods: Twenty seven disk-shaped processed specimens were divided into control group (n = 9; comprises specimens made without substituting TCDDMDA in MMA) and two experimental groups (n = 9 each; specimens prepared by substituting TCDDMDA in MMA at 10% and 20% (v/v) concentration). Eluates were prepared by placing three specimens of each group into 9 mL of culture medium and then incubated at 37°C for 24 hours. Continuous cells lines of L929 mouse fibroblast cells were used and MTT assay was employed to assess cytotoxicity. One-way analysis of variance (ANOVA) with post hoc Tukey\'s honestly significant difference (HSD) test was used to compare the mean optical density (OD) values and cell viability among the groups. Results: A statistically significant difference was obtained (p = 0.000) when the mean and standard deviation of OD and cell viability (%) of the groups were compared. Highest OD value and cell viability was obtained with E20 group followed by E10 group. Conclusion: Addition of TCDDMDA in MMA of heat-cure denture base resin has no cytotoxic effect on L929 mouse fibroblasts. Clinical significance: Dual-reactive TCDDMDA is a crosslinking monomer which has no cytotoxic effects on mammalian cell cultures. Hence, incorporation of TCDDMDA to MMA can be extrapolated and projected for fabricating dentures without compromising biocompatibility.

PDF Share
  1. Gosavi SS, Gosavi SY, Alla RK. Local and systemic effects of unpolymerized monomers. Dent Res J 2010;7(2):82–87.
  2. Weaver RE, Goebel WM. Reactions to acrylic resin dental prostheses. J Prosthet Dent 1980;43(2):138–142. DOI: 10.1016/0022-3913(80) 90176-6.
  3. Silva CRC, Pellissari CV, Sanitá PV, et al. Metabolism of L929 cells after contact with acrylic resins. Part 1: Acrylic denture base resins. Int J Dentistry Oral Sci 2015;S1(001):1–5.
  4. Jorge JH, Giampaolo ET, Machado AL, et al. Cytotoxicity of denture base acrylic resins: a literature review. J Prosthet Dent 2003;90: 190–193. DOI: 10.1016/S0022-3913(03)00349-4.
  5. Goiato MC, Freitas E, Samtos DD, et al. Acrylic resin cytotoxicity for denture base – Literature review. Adv Clin Exp Med 2015;24(4): 679–686. DOI: 10.17219/acem/33009.
  6. International Organization for Standardization, ISO 10993-5. Biological Evaluation of medical devices – Part 5: tests for in vitro cytotoxicity. Geneva: ISO; 2009.
  7. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983;65:55–63. DOI: 10.1016/0022-1759(83)90303-4.
  8. Kojima N, Yamada M, Paranjpe A, et al. Restored viability and function of dental pulp cells on poly-methyl methacrylate (PMMA)-based dental resin supplemented with N-acetyl cysteine (NAC). Dent Mater 2008;24:1686–1693. DOI: 10.1016/
  9. Att W, Yamada M, Kojima N, et al. N-Acetyl cysteine prevents suppression of oral fibroblast function on poly (methyl methacrylate) resin. Acta Biomater 2009;5:391–398. DOI: 10.1016/j.actbio.2008.07.021.
  10. Yamada M, Kojima N, Att W, et al. N-Acetyl cysteine restores viability and function of rat odontoblast-like cells impaired by polymethylmethacrylate dental resin extract. Redox Rep 2009;14: 13–22. DOI: 10.1179/135100009X392430.
  11. Acosta-Torres LS, Mendieta I, Nuñez-Anita RE, et al. Cytocompatible antifungal acrylic resin containing silver nanoparticles for dentures. Int J Nanomedicine 2012;7:4777–4786. DOI: 10.2147/IJN. S32391.
  12. Zheng J, Su Q, Wang C, et al. Synthesis and biological evaluation of PMMA/MMT nanocomposite as denture base material. J Mater Sci Mater Med 2011;22:1063–1071. DOI: 10.1007/s10856-011-4269-8.
  13. Segerstrôm S, Sandborgh-Englung G, Ruyter EI. Biological and physicochemical properties of carbon-graphite fibre-reinforced polymers intended for implant suprastructures. Eur J Oral Sci 2011;119:246–252. DOI: 10.1111/j.1600-0722.2011.00826.x.
  14. Dawlee S, Jayakrishnan A, Jayabalan M. Studies on novel radiopaque methyl methacrylate: glycidyl methacrylate based polymer for biomedical applications. J Mater Sci Mater Med 2009;20:243–250. DOI: 10.1007/s10856-008-3557-4.
  15. Regis RR, Della Vecchia MP, Pizzolitto AC, et al. Antimicrobial properties and cytotoxicity of an antimicrobial monomer for application in prosthodontics. J Prosthodont 2012;21:283–290. DOI: 10.1111/j.1532-849X.2011.00815.x.
  16. Cochis A, Fracchia L, Martinotti MG, et al. Biosurfactants prevent in vitro Candida albicans biofilm formation on resins and silicon materials for prosthetic devices. Oral Surg Oral Med Oral Pathol Oral Radiol 2012;113:755–761. DOI: 10.1016/j.oooo.2011.11.004.
  17. Ata SO, Yavuzyilmaz H. In vitro comparison of the cytotoxicity of acetal resin, heat-polymerized resin, and autopolymerized resin as denture base materials. J Biomed Mater Res B Appl Biomater 2009;91:905–909. DOI: 10.1002/jbm.b.31473.
  18. Bural C, Aktaş E, Deniz G, et al. Effect of post-polymerization heat-treatments on degree of conversion, leaching residual MMA and in vitro cytotoxicity of auto-polymerizing acrylic repair resin. Dent Mater 2011;27:1135–1143. DOI: 10.1016/
  19. Jorge JH, Giampaolo ET, Vergani CE, et al. Effect of post-polymerization heat treatments on the cytotoxicity of two denture base acrylic resins. J Appl Oral Sci 2006;14:203–207. DOI: 10.1590/S1678-77572006000300011.
  20. Saravi ME, Vojdani M, Bahrani F. Evaluation of cellular toxicity of three denture base acrylic resins. J Dent (Tehran) 2012;9(4):180–188.
  21. Dahl JE, Polyzois JF, Polyzois GL. In vitro biocompatibility of denture relining materials. Gerodontology 2006;23:17–22. DOI: 10.1111/j.1741-2358.2006.00103.x.
  22. International Organization for Standardization, ISO 10993-12. Biological Evaluation of medical devices – Part 12: Sample preparation and control samples. Russian Federation: ISO; 2015.
  23. Schweiki H, Schmalz G. Toxicity parameters for cytotoxicity testing of dental materials in two different mammalian cell lines. Eur J Oral Sci 1996;104:292–299. DOI: 10.1111/j.1600-0722.1996.tb00080.x.
  24. Jorge JH, Giampaolo ET, Vergani CE, et al. Biocompatibility of denture base acrylic resins evaluated in culture of L929 cells. Effect of polymerization cycle and post-polymerization treatments. Gerodontology 2007;24:52–57. DOI: 10.1111/j.1741-2358.2007.00146.x.
  25. Jorge JH, Giampaolo ET, Vergani CE, et al. Cytotoxicity of denture base resins: effect of water bath and microwave postpolymerization heat treatments. Int J Prosthodont 2004;17:340–344.
  26. Lefebvre CA, Knoernschild KL, Schuster GS. Cytotoxicity of eluates from light-polymerized denture base resins. J Prosthet Dent 1994;72:644–650. DOI: 10.1016/0022-3913(94)90298-4.
  27. Ajay R, Suma K, Jaya Krishnakumar S, et al. Chemical characterization of denture base resin with a novel cycloaliphatic monomer. J Contemp Dent Pract 2019;20(8):940–946.
  28. Horie K, Otagawa M, Muraaoka M, et al. Calorimetric investigation of polymerization reaction. V. Crosslinked copolymerization of methyl methacrylate with ethylene dimethacrylate. J Polym Sci 1975;13:445–486.
  29. Moharram MA, Abdel Nour KN, Abdel Hakeem N, et al. Effect of cross-linking agents on the molecular properties of denture base resins. J Mater Sci 1992;27:6041–6046. DOI: 10.1007/BF01133747.
  30. Viljanen EK, Lassila LV, Skrifvars M, et al. Degree of conversion and flexural properties of a dendrimer/methyl methacrylate copolymer: design of experiments and statistical screening. Dent Mater 2005;21:172–177. DOI: 10.1016/
  31. Viljanen EK, Skrifvars M, Vallittu PK. Dendrimer/methyl methacrylate co-polymers: residual methyl methacrylate and degree of conversion. J Biomater Sci Polym Ed 2005;16:1219–1231. DOI: 10.1163/156856205774269566.
  32. Viljanen EK, Langer S, Skrifvars M, et al. Analysis of residual monomers in dendritic methacrylate copolymers and composites by HPLC and headspace-GC/MS. Dent Mater 2006;22:845–851. DOI: 10.1016/
  33. Harrison A, Huggett R. Effect of the curing cycle on residual monomer levels of acrylic resin denture base polymers. J Dent 1992;20:370–374. DOI: 10.1016/0300-5712(92)90031-7.
  34. Kedjarune U, Charoenworaluk N, Koontongkaluk S. Release of methyl methacrylate from heat-polymerized and autopolymerized resins: Cytotoxicity testing related to monomer. Aust Dent J 1999;44:25–30. DOI: 10.1111/j.1834-7819.1999.tb00532.x.
  35. Vallittu PK, Miettinen V, Alakuijala P. Residual monomer content and its release into water from denture base materials. Dent Mater 1995;11:338–342. DOI: 10.1016/0109-5641(95)80031-X.
  36. Ruyter IE, Svendsen SA. Flexural properties of denture base polymers. J Prosthet Dent 1980;43:95–104. DOI: 10.1016/0022-3913(80)90362-5.
  37. Urban VM, Machado AL, Oliveira RV, et al. Residual monomer of reline acrylic resins. Effect of water-bath and microwave post-polymerization treatments. Dent Mater 2007;23(3):363–368. DOI: 10.1016/
  38. Anusavice KJ. Phillips’ science of dental materials, 11th ed., St. Louis, Missouri: Saunders Elsevier; 2003. p. 733.
  39. Huang FM, Tai KW, Hu CC. Cytotoxicity effects of denture base materials on a permanent oral epithelial cell line and on primary human oral fibroblasts in vitro. Int J Prosthodont 2001;14: 439–443.
  40. Rose EC, Bumann J, Jonas IE, et al. Contribution to the biological assessment of orthodontic acrylic materials. Measurement of their residual monomer output and cytotoxicity. J Orofac Orthop 2000;61:246–257. DOI: 10.1007/s000560050010.
  41. Schmalz G. Use of cell cultures for toxicity testing of dental materials – advantages and limitations. J Dent 1994;22(2):S6–S11. DOI: 10.1016/0300-5712(94)90032-9.
  42. Schmalz G. A reproducibility study on the agar diffusion test. J Dent Res 1982;61:577.
  43. Ajay R, Suma K, Asharaf Ali S. Monomer modifications of denture base acrylic resin: a systematic review and meta-analysis. J Pharm Bioall Sci 2019 May;11:S112–S125. DOI: 10.4103/JPBS.JPBS_34_19.
  44. Augustine D, Rao RS, Anbu J, et al. In vitro antiproliferative effect of earthworm coelomic fluid of Eudrilus eugeniae, Eisenia foetida, and Perionyx excavatus on squamous cell carcinoma-9 cell line: a pilot study. Phcog Res 2017;9(S1):61–66. DOI: 10.4103/pr.pr_52_17.
  45. Augustine D, Rao RS, Jayaraman A, et al. Anti-proliferative activity of earthworm coelomic fluid using oral squamous carcinoma KB 3-1 cells: An In vitro study with serine protease analysis. Phcog Mag 2018;14:528–534. DOI: 10.4103/pm.pm_412_18.
  46. Campanha NH, Pavarina AC, Giampaolo ET, et al. Cytotoxicity of chairside reline resins: effect of microwave irradiation and water bath postpolymerization treatments. Int J Prosthodont 2006;19: 195–201.
  47. Sheridan PJ, Koha S, Ewoldsen NO, et al. Cytotoxicity of denture base resins. Int J Prosthodont 1997 Jan-Feb;10(1):73–77.
  48. Huggett R, Brooks SC, Bates JF. The effect of different curing cycles on levels of residual monomer in acrylic resin denture base materials. Quintessence Dent Technol 1984;8:365–371.
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.