The Journal of Contemporary Dental Practice

Register      Login

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue

Online First

Archive
Related articles

VOLUME 20 , ISSUE 6 ( June, 2019 ) > List of Articles

ORIGINAL RESEARCH

Correlation between Temporomandibular Joints and Nasal Cavity Width in Growing Patients after Rapid Maxillary Expansion

Ghassan Sleilaty, Robert Garcia, Khaldoun Rifai

Keywords : Cone beam computed tomography, Correlation, Intercondylar distance, Interglenoid fossa distance, Nasal cavity width

Citation Information : Sleilaty G, Garcia R, Rifai K. Correlation between Temporomandibular Joints and Nasal Cavity Width in Growing Patients after Rapid Maxillary Expansion. J Contemp Dent Pract 2019; 20 (6):686-692.

DOI: 10.5005/jp-journals-10024-2580

License: CC BY-NC 4.0

Published Online: 01-06-2019

Copyright Statement:  Copyright © 2019; Jaypee Brothers Medical Publishers (P) Ltd.


Abstract

Aim: The study tests the correlation between the enlargement of the nasal cavity width, interglenoid fossa distance, and intercondylar distance after rapid maxillary expansion (RME) in growing patients. Materials and methods: Cone beam computed tomography (CBCT) was performed for 25 patients presenting a bilateral crossbite (11 males, 14 females, and mean age 11.6 ± 1.6 years) at baseline (T0) and at 6 months after RME (T2), T1 being the end of expander activation. Images were digitized for linear measurements using specific software. Values were compared at the nasal width, interglenoid fossa distance, and intercondylar distance to test the correlation in the transverse dimension. Results: At T0, a correlation already existing between the interglenoid fossa distance and the intercondylar distance persisted at T2. The correlation between the nasal cavity width and interglenoid fossa distance nonexistent at T0 ended toward statistically significant at T2. Additionally, the lateral position of the condyles was not correlated with the nasal cavity width neither at T0 or T2. Conclusion: A correlation between the interglenoid fossa distance and intercondylar distance was exhibited 6 months after RME. The correlation between the nasal cavity width and interglenoid fossa distance was close to significant at T2.


PDF Share
  1. Haas AJ. Palatal expansion: just the beginning of dentofacial orthopedics. Am J Orthod 1970;57(3):219–255.
  2. Melgaço CA, Columbano Neto J, et al. Immediate changes in condylar position after rapid maxillary expansion. Am J Orthod Dentofacial Orthop 2014;145(6):771–779. DOI: 10.1016/j.ajodo.2014.01.024.
  3. Haas AJ. The Treatment of Maxillary Deficiency by Opening the Midpalatal Suture. Angle Orthod 1965;35:200–217. DOI: 10.1043/0003-3219(1965)035<0200:TTOMDB>2.0.CO;2.
  4. Angelieri F, Franchi L, et al. Prediction of rapid maxillary expansion by assessing the maturation of the midpalatal suture on cone beam CT. Dental Press J Orthod 2016;21(6):115–125. DOI: 10.1590/2177- 6709.21.6.115-125.sar.
  5. McNamara Jr JA, Lione R, et al. The role of rapid maxillary expansion in the promotion of oral and general health. Prog Orthod 2015;16–33. DOI: 10.1186/s40510-015-0105-x.
  6. McLeod L, Hernandez IA, et al. Condylar positional changes in rapid maxillary expansion assessed with cone-beam computer tomography. Int Orthod 2016;14(3):342–356. DOI: 10.1016/j. ortho.2016.07.006.
  7. Sayegh-Ghoussoub M. Effect of rapid maxillary expansion on glenoid fossa and condylar position in growing patients. http://isrctn.com/ [Internet]. Springer Nature; 2017 Nov 7.
  8. McNamara JA. Maxillary transverse deficiency. Am J Orthod Dentofacial Orthop 2000;117(5):567–570.
  9. Lione R, Ballanti F, et al. Treatment and posttreatment skeletal effects of rapid maxillary expansion studied with low-dose computed tomography in growing subjects. Am J Orthod Dentofacial Orthop 2008;134(3):389–392. DOI: 10.1016/j.ajodo.2008.05.011.
  10. Eichenberger M, Baumgartner S. The impact of rapid palatal expansion on children's general health: a literature review. Eur J Paediatr Dent 2014;15(1):67–71.
  11. Piancino MG, Talpone F, et al. Reverse-sequencing chewing patterns before and after treatment of children with a unilateral posterior crossbite. Eur J Orthod 2006;28(5):480–484. DOI: 10.1093/ejo/cjl014.
  12. Tadej G, Engstrom C, et al. Mandibular condyle morphology in relation to malocclusions in children. Angle Orthod 1989;59(3):187–194. DOI: 10.1043/0003-3219(1989)059<0187:MCMIRT>2.0.CO;2.
  13. Solberg WK, Bibb CA, et al. Malocclusion associated with temporomandibular joint changes in young adults at autopsy. Am J Orthod 1986;89(4):326–330.
  14. Kusayama M, Motohashi N, et al. Relationship between transverse dental anomalies and skeletal asymmetry. Am J Orthod Dentofacial Orthop 2003;123(3):329–337. DOI: 10.1067/mod.2003.41.
  15. Baratieri C, Alves Jr M, et al. 3D mandibular positioning after rapid maxillary expansion in class II malocclusion. Braz Dent J 2011;22(5):428–434.
  16. Lagravere MO, Gordon JM, et al. Reliability of traditional cephalometric landmarks as seen in three-dimensional analysis in maxillary expansion treatments. Angle Orthod 2009;79(6):1047–1056. DOI: 10.2319/010509-10R.1.
  17. Lagravere MO, Low C, et al. Intraexaminer and interexaminer reliabilities of landmark identification on digitized lateral cephalograms and formatted 3-dimensional cone-beam computerized tomography images. Am J Orthod Dentofacial Orthop 2010;137(5):598–604. DOI: 10.1016/j.ajodo.2008.07.018.
  18. Cevidanes LH, Bailey LJ, et al. Three-dimensional cone-beam computed tomography for assessment of mandibular changes after orthognathic surgery. Am J Orthod Dentofacial Orthop 2007;131(1):44–50. DOI: 10.1016/j.ajodo.2005.03.029.
  19. Ludlow JB, Laster WS, et al. Accuracy of measurements of mandibular anatomy in cone beam computed tomography images. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007;103(4):534–542. DOI: 10.1016/j.tripleo.2006.04.008.
  20. Frongia G, Piancino MG, et al. Cone-beam computed tomography: accuracy of three-dimensional cephalometry analysis and influence of patient scanning position. J Craniofac Surg 2012;23(4):1038–1043. DOI: 10.1097/SCS.0b013e318252d5e1.
  21. Commission E. Cone beam CT for dental and maxillofacial radiologyevidence- based guidelines. (Euratom) TSFPotEAEC; 2012.
  22. Kecik D, Kocadereli I, et al. Evaluation of the treatment changes of functional posterior crossbite in the mixed dentition. Am J Orthod Dentofacial Orthop 2007;131(2):202–215. DOI: 10.1016/j.ajodo.2005.03.030.
  23. Arat FE, Arat ZM, et al. Muscular and condylar response to rapid maxillary expansion. Part 2: magnetic resonance imaging study of the temporomandibular joint. Am J Orthod Dentofacial Orthop 2008;133(6):823–829. DOI: 10.1016/j.ajodo.2006.07.029.
  24. Di Carlo G, Saccucci M, et al. Rapid maxillary expansion and upper airway morphology: a systematic review on the role of cone beam computed tomography. Biomed Res Int 2017;2017:5460429. DOI: 10.1155/2017/5460429.
  25. El H, Palomo JM. Three-dimensional evaluation of upper airway following rapid maxillary expansion: a CBCT study. Angle Orthod 2014;84(2):265–273. DOI: 10.2319/012313-71.1.
  26. Ribeiro AN, de Paiva JB, et al. Upper airway expansion after rapid maxillary expansion evaluated with cone beam computed tomography. Angle Orthod 2012;82(3):458–463. DOI: 10.2319/030411-157.1.
  27. Cordasco G, Nucera R, et al. Effects of orthopedic maxillary expansion on nasal cavity size in growing subjects: a low dose computer tomography clinical trial. Int J Pediatr Otorhinolaryngol 2012;76(11):1547–1551. DOI: 10.1016/j.ijporl.2012.07.008.
  28. Kilic N, Oktay H. Effects of rapid maxillary expansion on nasal breathing and some naso-respiratory and breathing problems in growing children: a literature review. Int J Pediatr Otorhinolaryngol 2008;72(11):1595–1601. DOI: 10.1016/j.ijporl.2008.07.014.
  29. Kilic N, Yoruk O, et al. Rapid maxillary expansion versus middle ear tube placement: comparison of hearing improvements in children with resistance otitis media with effusion. Angle Orthod 2016;86(5):761–767. DOI: 10.2319/101515-693.1.
  30. Boryor A, Geiger M, et al. Stress distribution and displacement analysis during an intermaxillary disjunction–a three-dimensional FEM study of a human skull. J Biomech 2008;41(2):376–382. DOI: 10.1016/j. jbiomech.2007.08.016.
  31. De Clerck H, Nguyen T, et al. Three-dimensional assessment of mandibular and glenoid fossa changes after bone-anchored class III intermaxillary traction. Am J Orthod Dentofacial Orthop 2012;142(1):25–31. DOI: 10.1016/j.ajodo.2012.01.017.
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.