The Journal of Contemporary Dental Practice

Register      Login

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue

Online First

Archive
Related articles

VOLUME 20 , ISSUE 6 ( June, 2019 ) > List of Articles

ORIGINAL RESEARCH

Influence of Temperature on the Cyclic Fatigue of Nickel–Titanium Instruments with Different Heat Treatments on Severely Curved Canals

Ryhan Menezes Cardoso, Nayane Chagas Carvalho Alves, Sílvio Emanuel Acioly Conrado de Menezes, Shirley Machado Batista, Thalita Miranda Vieira, Giselle Nevares Elgarten Rocha, Gabriela Queiroz de Melo Monteiro, Diana Santana de Albuquerque

Keywords : Body temperature, Cyclic fatigue, Nickel–titanium alloy, ProDesign Logic, XP-endo Shaper

Citation Information : Cardoso RM, Carvalho Alves NC, Conrado de Menezes SE, Batista SM, Vieira TM, Elgarten Rocha GN, de Melo Monteiro GQ, de Albuquerque DS. Influence of Temperature on the Cyclic Fatigue of Nickel–Titanium Instruments with Different Heat Treatments on Severely Curved Canals. J Contemp Dent Pract 2019; 20 (6):697-701.

DOI: 10.5005/jp-journals-10024-2582

License: CC BY-NC 4.0

Published Online: 01-06-2019

Copyright Statement:  Copyright © 2019; Jaypee Brothers Medical Publishers (P) Ltd.


Abstract

Aim: This study aims to investigate the influence of temperatures of 20 °C and 37 °C on the resistance to cyclic fatigue of NiTi instruments with different heat treatments, as tested in severely curved simulated canals. Materials and methods: Seventy-two instruments were distributed according to the temperature used (20 °C and 37 °C): XP-endo Shaper (30/0.01), ProDesign Logic (30/0.05), and iRaCe (30/0.04). The instruments were rotated freely until the occurrence of fracture inside an artificial severely curved stainless steel canal, which had a 90° angle of curvature and a curvature radius of 5 mm. Kolmogorov–Smirnov, Wilcoxon, ANOVA, and Kruskal–Wallis tests were performed. A p value of <0.05 was considered statistically significant. Results: XP-endo Shaper instruments presented higher NCF values and time to failure compared with ProDesign Logic and iRaCe instruments at 20 °C and 37 °C (p < 0.001). Conclusion: Within the limitations of this study, the results show that the body temperature (37 °C) significantly lowers the resistance to cyclic fatigue of all instruments compared with 20 °C.


PDF Share
  1. Peters OA. Current challenges and concepts in the preparation of root canal systems: a review. J Endod 2004;30:559–567.
  2. Schäfer E, Schulz-Bongert U, et al. Comparison of hand stainless steel and nickel titanium rotary instrumentation: a clinical study. J Endod 2004;30:432–435.
  3. Zhao D, Shen Y, et al. Root canal preparation of mandibular molars with 3 nickel–titanium rotary instruments: a micro-computed tomographic study. J Endod 2014;40:1860–1864. DOI: 10.1016/j. joen.2014.06.023.
  4. Capar ID, Ertas H, et al. Comparative study of different novel nickel– titanium rotary systems for root canal preparation in severely curved root canals. J Endod 2014;40:852–856. DOI: 10.1016/j.joen.2013.10.010.
  5. de Carvalho GM, Sponchiado Junior EC, et al. Apical transportation, centering ability, and cleaning effectiveness of reciprocating singlefile system associated with different glide path techniques. J Endod 2015;41:2045–2049. DOI: 10.1016/j.joen.2015.09.005.
  6. Jatahy Ferreira do Amaral RO, Leonardi DP, et al. Influence of cervical and apical enlargement associated with the WaveOne system on the transportation and centralization of endodontic preparations. J Endod 2016; 42:626–631. DOI: 10.1016/j.joen.2015.12.005.
  7. Gergi R, Arbab-Chirani R, et al. Micro-computed tomographic evaluation of canal transportation instrumented by different kinematics rotary nickel–titanium instruments. J Endod 2014;40: 1223–1227. DOI: 10.1016/j.joen.2014.01.039.
  8. Panitvisai P, Parunnit P, et al. Impact of a retained instrument on treatment outcome: a systematic review and meta-analysis. J Endod 2010;36:775–780. DOI: 10.1016/j.joen.2009.12.029.
  9. Shen Y, Qian W, et al. Fatigue testing of controlled memory wire nickel–titanium rotary instruments. J Endod 2011;37:997–1001. DOI: 10.1016/j.joen.2011.03.023.
  10. Sattapan B, Nervo GJ, et al. Defects in rotary nickel-titanium files after clinical use. J Endod 2000;26:161–165. DOI: 10.1097/00004770- 200003000-00008.
  11. Baek SH, Lee CJ, et al. Comparison of torsional stiffness of nickel– titanium rotary files with different geometric characteristics. J Endod 2011;37:1283–1286. DOI: 10.1016/j.joen.2011.05.032.
  12. Shen Y, Zhou HM, et al. Metallurgical characterization of controlled memory wire nickel–titanium rotary instruments. J Endod 2011;37:1566–1571. DOI: 10.1016/j.joen.2011.08.005.
  13. Elnaghy AM, Elsaka SE. Torsion and bending properties of OneShape and WaveOne instruments. J Endod 2015;41:544–547. DOI: 10.1016/j.joen.2014.11.010.
  14. Gambarini G, Grande NM, et al. Fatigue resistance of enginedriven rotary nickel–titanium instruments produced by new manufacturing methods. J Endod 2008;34:1003–1005. DOI: 10.1016/j.joen.2008.05.007.
  15. Gutmann JL, Gao Y. Alteration in the inherent metallic and surface properties of nickel–titanium root canal instruments to enhance performance, durability and safety: a focused review. Int Endod J 2012;45:113–128. DOI: 10.1111/j.1365-2591.2011.01957.x.
  16. Shen Y, Zhou HM, et al. Current challenges and concepts of the thermomechanical treatment of nickel–titanium instruments. J Endod 2013;39:163–172. DOI: 10.1016/j.joen.2012.11.005.
  17. Zhou HM, Shen Y, et al. Mechanical properties of controlled memory and superelastic nickel–titanium wires used in the manufacture of rotary endodontic instruments. J Endod 2012;38:1535–1540. DOI: 10.1016/j.joen.2012.07.006.
  18. Kuhn G, Tavernier B, et al. Influence of structure on nickel–titanium endodontic instruments failure. J Endod 2001;27:516–520. DOI: 10.1097/00004770-200108000-00005.
  19. Anderson ME, Price JW, et al. Fracture resistance of electropolished rotary nickel–titanium endodontic instruments. J Endod 2007;33: 1212–1216. DOI: 10.1016/j.joen.2007.07.007.
  20. Boessler C, Paque F, et al. The effect of electropolishing on torque and force during simulated root canal preparation with ProTaper shaping files. J Endod 2009;35:102–106. DOI: 10.1016/j.joen.2008.09.008.
  21. Lopes HP, Elias CN, et al. Effects of electropolishing surface treatment on the cyclic fatigue resistance of BioRace nickel–titanium rotary instruments. J Endod 2010;36:1653–1657. DOI: 10.1016/j.joen.2010.06.026.
  22. Yýlmaz K, Uslu G, et al. Cyclic fatigue resistances of several nickel– titanium glide path rotary and reciprocating instruments at body temperature. Int Endod J 2018;51:924–930. DOI: 10.1111/iej.12901.
  23. Silva EJNL, Vieira VTL, et al. Cyclic and torsional fatigue resistance of XP-endo Shaper and TRUShape instruments. J Endod 2018;44: 168–172. DOI: 10.1016/j.joen.2013.10.006.
  24. Pruett JP, Clement DJ, et al. Cyclic fatigue testing of nickel–titanium endodontic instruments. J Endod 1997;23:77–85. DOI: 10.1016/S0099- 2399(97)80250-6.
  25. Haïkel Y, Serfaty R, et al. Dynamic and cyclic fatigue of enginedriven rotary nickel–titanium endodontic instruments. J Endod 1999;25:434–440. DOI: 10.1016/S0099-2399(99)80274-X.
  26. Plotino G, Grande NM, et al. A review of cyclic fatigue testing of nickel–titanium rotary instruments. J Endod 2009;35:1469–1476. DOI: 10.1016/j.joen.2009.06.015.
  27. Jamleh A, Yahata Y, et al. Performance of NiTi endodontic instrument under different temperatures. Odontology 2016;104:324–328. DOI: 10.1007/s10266-015-0214-5.
  28. de Hemptinne F, Slaus G, et al. In vivo intracanal temperature evolution during endodontic treatment after the injection of room temperature or preheated sodium hypochlorite. J Endod 2015;41:1112–1115. DOI: 10.1016/j.joen.2015.02.011.
  29. Plotino G, Grande NM, et al. Influence of temperature on cyclic fatigue resistance of ProTaper Gold and ProTaper universal rotary files. J Endod 2017;43:200–202. DOI: 10.1016/j.joen.2016.10.014.
  30. de Vasconcelos RA, Murphy S, et al. Evidence for reduced fatigue resistance of contemporary rotary instruments exposed to body temperature. J Endod 2016;42:782–787. DOI: 10.1016/j.joen.2016.01.025.
  31. Elnaghy A, Elsaka S. Cyclic fatigue resistance of XP-endo Shaper compared with different nickel–titanium alloy instruments. Clin Oral Investig 2018;22:1433–1437. DOI: 10.1007/s00784-017-2245-5.
  32. Keskin C, Inan U, et al. Cyclic Fatigue resistance of XP-Endo Shaper, K3XF, and ProTaper Gold nickel–titanium instruments. J Endod 2018;44:1164–1167. DOI: 10.1016/j.joen.2005.09.003.
  33. Kim HC, Kwak SW, et al. Cyclic fatigue and torsional resistance of two new nickel–titanium instruments used in reciprocation motion: Reciproc versus WaveOne. J Endod 2012;38:541–544. DOI: 10.1016/j.joen.2011.11.014.
  34. Cheung GS, Darvell BW. Low-cycle fatigue of NiTi rotary instruments of various cross-sectional shapes. Int Endod J 2007;40:626–632. DOI: 10.1111/j.1365-2591.2007.01257.x.
  35. Kaval ME, Capar ID, et al. Evaluation of the cyclic fatigue and torsional resistance of novel nickel–titanium rotary files with various alloy properties. J Endod 2016;42:1840–1843. DOI: 10.1016/j.joen.2016.07.015.
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.