The Journal of Contemporary Dental Practice

Register      Login

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue

Online First

Archive
Related articles

VOLUME 20 , ISSUE 8 ( August, 2019 ) > List of Articles

REVIEW ARTICLE

Role of Synthetic Hydroxyapatite—In Socket Preservation: A Systematic Review and Meta-analysis

Mohasin A Khader, Karthika Rajeev

Keywords : Bone, Extraction, Healing, Implant, Regeneration, Restoration

Citation Information : Khader MA, Rajeev K. Role of Synthetic Hydroxyapatite—In Socket Preservation: A Systematic Review and Meta-analysis. J Contemp Dent Pract 2019; 20 (8):987-993.

DOI: 10.5005/jp-journals-10024-2616

License: CC BY-NC 4.0

Published Online: 01-04-2019

Copyright Statement:  Copyright © 2019; The Author(s).


Abstract

Since a long time, the preservation of the socket is emphasized for various reasons. Many studies have suggested the ridge preservation through socket grafting using various bone graft substitute materials (GSMs). But none of the studies suggested the material of choice for the grafting. So, the systematic review was planned to analyze the outcomes of synthetic hydroxyapatite (SHA) graft material for socket preservation. The review was aimed to determine the existing evidence for the use of SHA GSM for grafting and its usefulness. Materials and methods: The literature search was performed for the studies published in the English language independently by all four authors (search team) in the Medline database through the PubMed search engine for the past 5 years. The study involved predetermined inclusion and exclusion criteria for the search. The final lists of clinical trials were analyzed to determine the existing evidence and suggested the mechanism of action. Review results: The search resulted in 117 titles. After application of inclusion and exclusion criteria, a total of seven studies were found eligible for this systematic review. Out of seven, two studies were found eligible for meta-analysis whereas remaining included for the systematic review. Conclusion: The meta-analysis favors socket grafting compared to control in terms of preservation of existing bone height and width. The SHA grafting showed successful bone regeneration with less connective tissue component. The histomorphometric evaluation showed a good bone regeneration associated with SHA than xenograft. Within the limitations of this meta-analysis, the synthetic GSM can be used for socket grafting. Clinical significance: In the wake of increasing graft materials in the market and different origin raw material sources for the preparation of graft materials, clinicians are in dilemma for selection and its use. The success of grafting depends on the selection of appropriate material with a suitable calcium/phosphate (Ca/P) ratio. The review provided available evidence for the use of SHA.


HTML PDF Share
  1. Van Der Weijden F, Dell'Acqua F, et al. Alveolar bone dimensional changes of post-extraction sockets in humans: A systematic review. J Clin Periodontol 2009;36(12):1048–1058. DOI: 10.1111/j.1600-051X.2009.01482.x.
  2. Horváth A, Mardas N, et al. Alveolar ridge preservation. A systematic review. Clin Oral Investig 2013;17(2):341–363. DOI: 10.1007/s00784-012-0758-5.
  3. Wang HL, Kiyonobu K, et al. Socket augmentation: Rationale and technique. Implant Dent 2004;13(4):286–296. DOI: 10.1097/01.id.0000148559.57890.86.
  4. Artzi Z, Tal H, et al. Porous bovine bone mineral in healing of human extraction sockets. Part 1: histomorphometric evaluations at 9 months. J Periodonto 2000;71(6):1015–1023. DOI: 10.1902/jop.2000.71.6.1015.
  5. Morjaria KR, Wilson R, et al. Bone healing after tooth extraction with or without an intervention: A systematic review of randomized controlled trials. Clin Implant Dent Relat Res 2014;16(1):1–20. DOI: 10.1111/j.1708-8208.2012.00450.x.
  6. Araújo MG, Silva CO, et al. Alveolar socket healing: what can we learn? Periodontol 2000 2015;68(1):122–134. DOI: 10.1111/prd.12082.
  7. Farina R, Trombelli L. Wound healing of extraction sockets. Endod Top 2011;25(1):16–43. DOI: 10.1111/etp.12016.
  8. Pagni G, Pellegrini G, et al. Postextraction alveolar ridge preservation: Biological basis and treatments. Int J Dent 2012;2012:151030. DOI: 10.1155/2012/151030.
  9. Bartee BK. Extraction Site Reconstruction for Alveolar Ridge Preservation. Part 1: Rationale and Materials Selection. J Oral Implantol 2001;27(4):187–193. DOI: 10.1563/1548-1336(2001)027<0187:ESRFAR>2.3.CO;2.
  10. Frost NA, Banjar AA, et al. The Decision-Making Process for Ridge Preservation Procedures After Tooth Extraction. Clin Adv Periodontics 2014;4(1):56–63. DOI: 10.1902/cap.2013.130013.
  11. Fee L. Socket preservation. Br Dent J 2017;222(8):579–582. DOI: 10.1038/sj.bdj.2017.355.
  12. Mangano C, Piattelli A, et al. Dense hydroxyapatite inserted into postextraction sockets: a histologic and histomorphometric 20-year case report. J Periodontol 2008;79(5):929–933. DOI: 10.1902/jop.2008.070245.
  13. Caplanis N, Lozada JL, et al. Extraction Defect: Assessment, Classification and Management. J Calif Dent Assoc 2005 Nov;33(11):853–863. PMID: 16463907.
  14. Ashman A, LoPinto J, et al. Ridge augmentation for immediate postextraction implants: eight year retrospective study. Pract Periodontics Aesthet Dent 1995;7(2):85–94, quiz 95.
  15. Lekovic V, Kenney EB, et al. A bone regenerative approach to alveolar ridge maintenance following tooth extraction. Report of 10 cases. J Periodontol 1997;68(6):563–570. DOI: 10.1902/jop.1997.68.6.563.
  16. Froum S, Orlowski W. Ridge preservation utilizing an alloplast prior to implant placement-clinical and histological case reports. Pract Periodontics Aesthet Dent 2000;12(4):393–402, ; quiz 404.
  17. Bolouri A, Haghighat N, et al. Evaluation of the effect of immediate grafting of mandibular postextraction sockets with synthetic bone. Compend Contin Educ Dent 2001;22(11):955.
  18. Froum S, Cho S-C, et al. Extraction sockets and implantation of hydroxyapatites with membrane barriers a histologic study. Implant Dent 2004;13(2):153–164. DOI: 10.1097/01.ID.0000127524.98819.FF.
  19. Gholami GA, Najafi B, et al. Clinical, histologic and histomorphometric evaluation of socket preservation using a synthetic nanocrystalline hydroxyapatite in comparison with a bovine xenograft: a randomized clinical trial. Clin Oral Implants Res 2012;23(10):1198–1204. DOI: 10.1111/j.1600-0501.2011.02288.x.
  20. Esposito M, Grusovin MG, et al. Interventions for replacing missing teeth: horizontal and vertical bone augmentation techniques for dental implant treatment. Cochrane Database Syst Rev 2009(4):CD003607. DOI: 10.1002/14651858.CD003607.pub4.
  21. Hong J-Y, Lee J-S, et al. Impact of different synthetic bone fillers on healing of extraction sockets: an experimental study in dogs. Clin Oral Implants Res 2014;25(2):e30–e37. DOI: 10.1111/clr.12041.
  22. McCrea SJJ. “Sliding Full-Thickness Pedicle Flap” for Primary Wound Closure of the Socket Preservation Site. J Oral Implantol 2015;41(S1):372–376. DOI: 10.1563/AAID-JOI-D-13-00262.
  23. Kim J-J, Schwarz F, et al. Ridge preservation of extraction sockets with chronic pathology using Bio-Oss® Collagen with or without collagen membrane: an experimental study in dogs. Clin Oral Implants Res 2017;28(6):727–733. DOI: 10.1111/clr.12870.
  24. Caiazzo A, Brugnami F, et al. Buccal plate preservation with immediate implant placement and provisionalization: 5-year follow-up outcomes. J Maxillofac Oral Surg 2018;17(3):356–361. DOI: 10.1007/s12663-017-1054-3.
  25. Jung RE, Ioannidis A, et al. Alveolar ridge preservation in the esthetic zone. Periodontol 2000 2018;77(1):165–175. DOI: 10.1111/prd.12209.
  26. AkbarzadehBaghban A, Dehghani A, et al. Comparing alveolar bone regeneration using Bio-Oss and autogenous bone grafts in humans: a systematic review and meta-analysis. Iran Endod J 2009;4(4):125–130.
  27. Atieh MA, Alsabeeha NHM, et al. Interventions for replacing missing teeth: alveolar ridge preservation techniques for dental implant site development. Cochrane Database Syst Rev 2015(5):CD010176. DOI: 10.1002/14651858.CD010176.pub2.
  28. Barallat L, Ruíz-Magaz V, et al. Histomorphometric results in ridge preservation procedures comparing various graft materials in extraction sockets with nongrafted sockets in humans: a systematic review. Implant Dent 2014;23(5):539–554. DOI: 10.1097/ID.0000000000000124.
  29. Jambhekar S, Kernen F, et al. Clinical and histologic outcomes of socket grafting after flapless tooth extraction: a systematic review of randomized controlled clinical trials. J Prosthet Dent 2015;113(5): 371–382. DOI: 10.1016/j.prosdent.2014.12.009.
  30. Kattimani VS, Kondaka S, et al. Hydroxyapatite-past, present, and future in bone regeneration. Bone Tissue Regen Insights 2016;7:BTRI.S36138. DOI: 10.4137/BTRI.S36138.
  31. Avila-Ortiz G, Elangovan S, et al. Effect of alveolar ridge preservation after tooth extraction: a systematic review and meta-analysis. J Dent Res 2014;93(10):950–958. DOI: 10.1177/0022034514541127.
  32. De Risi V, Clementini M, et al. Alveolar ridge preservation techniques: a systematic review and meta-analysis of histological and histomorphometrical data. Clin Oral Implants Res 2015;26(1):50–68. DOI: 10.1111/clr.12288.
  33. Chan H-L, Lin G-H, et al. Alterations in bone quality after socket preservation with grafting materials: a systematic review. Int J Oral Maxillofac Implants 2013;28(3):710–720. DOI: 10.11607/jomi.2913.
  34. Fiorellini JP, Nevins ML. Localized ridge augmentation/preservation. A systematic review. Ann Periodontol 2003;8(1):321–327. DOI: 10.1902/annals.2003.8.1.321.
  35. Ten Heggeler JM, Slot DE, et al. Effect of socket preservation therapies following tooth extraction in non-molar regions in humans: a systematic review. Clin Oral Implants Res 2011;22(8):779–788. DOI: 10.1111/j.1600-0501.2010.02064.x.
  36. Vittorini Orgeas G, Clementini M, et al. Surgical techniques for alveolar socket preservation: a systematic review. Int J Oral Maxillofac Implants 2013;28(4):1049–1061. DOI: 10.11607/jomi.2670.
  37. Horváth A, Mardas N, et al. Alveolar ridge preservation. A systematic review. Clin Oral Investig 2013;17(2):341–363. DOI: 10.1007/s00784-012-0758-5.
  38. Iocca O, Farcomeni A, et al. Alveolar ridge preservation after tooth extraction: a Bayesian Network meta-analysis of grafting materials efficacy on prevention of bone height and width reduction. J Clin Periodontol 2017;44(1):104–114. DOI: 10.1111/jcpe.12633.
  39. MacBeth N, Trullenque-Eriksson A, et al. Hard and soft tissue changes following alveolar ridge preservation: a systematic review. Clin Oral Implants Res 2017;28(8):982–1004. DOI: 10.1111/clr.12911.
  40. Bassir SH, Alhareky M, et al. Systematic Review and Meta-Analysis of Hard Tissue Outcomes of Alveolar Ridge Preservation. Int J Oral Maxillofac Implants 2018;33(5):979–994. DOI: 10.11607/jomi.6399.
  41. Lee J, Lee J-B, et al. Flap Management in Alveolar Ridge Preservation: A Systematic Review and Meta-Analysis. Int J Oral Maxillofac Implants 2018;33(3):613–621. DOI: 10.11607/jomi.6368.
  42. Troiano G, Zhurakivska K, et al. Combination of bone graft and resorbable membrane for alveolar ridge preservation: A systematic review, meta-analysis, and trial sequential analysis. J Periodontol 2018;89(1):46–57. DOI: 10.1902/jop.2017.170241.
  43. Avila-Ortiz G, Chambrone L, et al. Effect of Alveolar Ridge Preservation Interventions Following Tooth Extraction: A Systematic Review and Meta-Analysis. J Clin Periodontol Jun;46(Suppl 21):195–223. DOI: 10.1111/jcpe.13057.
  44. Vignoletti F, Matesanz P, et al. Surgical protocols for ridge preservation after tooth extraction. A systematic review. Clin Oral Implants Res 2012;23(Suppl 5):22–38. DOI: 10.1111/j.1600-0501.2011.02331.x.
  45. Oonishi H, Oonishi H, et al. 27—Clinical application of hydroxyapatite. In: Kokubo T. ed.: Bioceramics and Their Clinical Applications. Woodhead Publishing Series in Biomaterials. Woodhead Publishing; 2008. pp. 606–687. DOI: 10.1533/9781845694227.3.606.
  46. Kattimani VS, Lingamaneni KP. Natural bioceramics: our experience with changing perspectives in the reconstruction of maxillofacial skeleton. J Korean Assoc Oral Maxillofac Surg 2019;45(1):34–42. DOI: 10.5125/jkaoms.2019.45.1.34.
  47. Kattimani V, Lingamaneni KP, et al. Eggshell-derived hydroxyapatite: A new era in bone regeneration. J Craniofac Surg 2016;27(1):112–117. DOI: 10.1097/SCS.0000000000002288.
  48. Sampath Kumar TS. Value added bioceramics: A review of the developments and progress in India. Key Eng Mater 2016;696:3–8. DOI: 10.4028/www.scientific.net/KEM.696.3.
  49. Kumar GS, Thamizhavel A, et al. Microwave conversion of eggshells into flower-like hydroxyapatite nanostructure for biomedical applications. Mater Lett 2012;76:198–200. DOI: 10.1016/j.matlet.2012.02.106.
  50. Ashman A. Postextraction ridge preservation using a synthetic alloplast. Implant Dent 2000;9(2):168–176.
  51. Damien CJ, Parsons JR. Bone graft and bone graft substitutes: a review of current technology and applications. J Appl Biomater Off J Soc Biomater 1991;2(3):187–208. DOI: 10.1002/jab.770020307.
  52. Hench LL, Wilson J. An Introduction to Bioceramics. Singapore: World Scientific; 1993.
  53. Habal MB, Reddi AH. Different forms of bone grafts. Bone Grafts and Bone Substitutes. Saunders; 1992. pp. 6–8.
  54. Nasr HF, Aichelmann-Reidy ME, et al. Bone and bone substitutes. Periodontol 2000 1999;19(1):74–86. DOI: 10.1111/j.1600-0757.1999.tb00148.x.
  55. Tulder MV, Furlan A, et al. Updated method guidelines for systematic reviews in the cochrane collaboration back review group. Spine 2003;28(12):1290–1299.
  56. Mayer Y, Zigdon-Giladi H, et al. Ridge preservation using composite alloplastic materials: A randomized control clinical and histological study in humans. Clin Implant Dent Relat Res 2016;18(6):1163–1170. DOI: 10.1111/cid.12415.
  57. Machtei EE, Mayer Y, et al. Prospective randomized controlled clinical trial to compare hard tissue changes following socket preservation using alloplasts, xenografts vs no grafting: Clinical and histological findings. Clin Implant Dent Relat Res 2019;21(1):14–20. DOI: 10.1111/cid.12707.
  58. Mozzati M, Gallesio G, et al. Socket preservation using a biomimetic nanostructured matrix and atraumatic surgical extraction technique. J Craniofac Surg 2017;28(4):1042–1045. DOI: 10.1097/SCS.0000000000003496.
  59. Noronha Oliveira M, Rau LH, et al. Ridge preservation after maxillary third molar extraction using 30% porosity PLGA/HA/β-TCP scaffolds with and without simvastatin: A pilot randomized controlled clinical trial. Implant Dent 2017;26(6):832–840. DOI: 10.1097/ID.0000000000000655.
  60. Cavdar FH, Keceli HG, et al. Evaluation of Extraction Site Dimensions and Density Using Computed Tomography Treated with Different Graft Materials: A Preliminary Study. Implant Dent 2017;26(2):270–274. DOI: 10.1097/ID.0000000000000567.
  61. El-Chaar ES. Clinical and histological evaluation of ceramic matrix in a collagen carrier for socket preservation in humans. Implant Dent 2016;25(1):149–154. DOI: 10.1097/ID.0000000000000362.
  62. Canullo L, Wiel Marin G, et al. Histological and histomorphometrical evaluation of postextractive sites grafted with Mg-enriched nano-hydroxyapatite: A randomized controlled trial comparing 4 vs 12 months of healing. Clin Implant Dent Relat Res 2016;18(5):973–983. DOI: 10.1111/cid.12381.
  63. Kentros GA, Filler SJ, et al. Six month evaluation of particulate Durapatite in extraction sockets for the preservation of the alveolar ridge. Implantologist 1985;3(2):53–62.
  64. Bell Jr DH. Particles vs solid forms of hydroxyapatite as a treatment modality to preserve residual alveolar ridges. J Prosthet Dent 1986;56(3):322–326. DOI: 10.1016/0022-3913(86)90013-2.
  65. Nemcovsky CE, Serfaty V. Alveolar ridge preservation following extraction of maxillary anterior teeth. Report on 23 consecutive cases. J Periodontol 1996;67(4):390–395. DOI: 10.1902/jop.1996.67.4.390.
  66. Ripamonti U. Osteoinduction in porous hydroxyapatite implanted in heterotopic sites of different animal models. Biomaterials 1996;17(1):31–35.
  67. Barba A, Diez-Escudero A, et al. Osteoinduction by Foamed and 3D-Printed Calcium Phosphate Scaffolds: Effect of Nanostructure and Pore Architecture. ACS Appl Mater Interfaces 2017;9(48):41722–41736. DOI: 10.1021/acsami.7b14175.
  68. Götz W, Lenz S, et al. A preliminary study in osteoinduction by a nano-crystalline hydroxyapatite in the mini pig. Folia Histochem Cytobiol 2010;48(4):589–596. DOI: 10.2478/v10042-010-0096-x.
  69. Habibovic P, Sees TM, et al. Osteoinduction by biomaterials–physicochemical and structural influences. J Biomed Mater Res A 2006;77(4):747–762. DOI: 10.1002/jbm.a.30712.
  70. Hao Y, Yan H, et al. Evaluation of osteoinduction and proliferation on nano-Sr-HAP: a novel orthopedic biomaterial for bone tissue regeneration. J Nanosci Nanotechnol 2012;12(1):207–212.
  71. Dewi AH, Ana ID. The use of hydroxyapatite bone substitute grafting for alveolar ridge preservation, sinus augmentation, and periodontal bone defect: A systematic review. Heliyon 2018;4(10):e00884. DOI: 10.1016/j.heliyon.2018.e00884.
  72. Bruijn JDD, Shankar K, et al. 9—Osteoinduction and its evaluation. In: Kokubo T. ed. Bioceramics and Their Clinical Applications. Woodhead Publishing Series in Biomaterials. Woodhead Publishing; 2008. pp. 199–219. DOI: 10.1533/9781845694227.1.199.
  73. Gosain AK, Song L, et al. A 1-year study of osteoinduction in hydroxyapatite-derived biomaterials in an adult sheep model: part I. Plast Reconstr Surg 2002;109(2):619–630.
  74. Heliotis M, Lavery KM, et al. Transformation of a prefabricated hydroxyapatite/osteogenic protein-1 implant into a vascularisedpedicled bone flap in the human chest. Int J Oral Maxillofac Surg 2006;35(3):265–269. DOI: 10.1016/j.ijom.2005.07.013.
  75. Kattimani VS, Chakravarthi PS, et al. Biograft Block Hydroxyapatite: A Ray of Hope in the Reconstruction of Maxillofacial Defects. J Craniofac Surg 2016;27(1):247–252. DOI: 10.1097/SCS.0000000000002252.
  76. Canullo L, Pellegrini G, et al. Alveolar socket preservation technique: Effect of biomaterial on bone regenerative pattern. Ann Anat 2016;206:73–79. DOI: 10.1016/j.aanat.2015.05.007.
  77. Pagni G, Pellegrini G, et al. Postextraction alveolar ridge preservation: biological basis and treatments. Int J Dent 2012;2012:151030. DOI: 10.1155/2012/151030.
  78. Kasaj A, Willershausen B, et al. Human periodontal ligament fibroblasts stimulated by nanocrystalline hydroxyapatite paste or enamel matrix derivative. An in vitro assessment of PDL attachment, migration, and proliferation. Clin Oral Investig 2012;16(3):745–754. DOI: 10.1007/s0-011-0570-7.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.