The Journal of Contemporary Dental Practice

Register      Login

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue

Online First

Archive
Related articles

VOLUME 20 , ISSUE 9 ( September, 2019 ) > List of Articles

ORIGINAL RESEARCH

Evaluation of the Antibacterial Efficiency of a Combination of 1% Alexidine and Sodium Hypochlorite on Enterococcus faecalis Biofilm Models: An In Vitro Study

Anchu R Thomas, Rekha Mani, Tripuravaram VK Reddy, Ashwin Ravichandran, Murali Sivakumar, Shobana Krishnakumar

Keywords : Alexidine, Biofilm, Confocal laser scanning microscope, Enterococcus faecalis

Citation Information : Thomas AR, Mani R, Reddy TV, Ravichandran A, Sivakumar M, Krishnakumar S. Evaluation of the Antibacterial Efficiency of a Combination of 1% Alexidine and Sodium Hypochlorite on Enterococcus faecalis Biofilm Models: An In Vitro Study. J Contemp Dent Pract 2019; 20 (9):1090-1094.

DOI: 10.5005/jp-journals-10024-2640

License: CC BY-NC 4.0

Published Online: 00-09-2019

Copyright Statement:  Copyright © 2019; Jaypee Brothers Medical Publishers (P) Ltd.


Abstract

Aim: The aim of the study was to assess the antibacterial efficiency of a combination of 1% alexidine (ALX) and 5.25% sodium hypochlorite (NaOCl) against E. faecalis biofilm using a confocal scanning electron microscopy. Materials and methods: An estimated 120 human root dentin disks were prepared, sterilized, and inoculated with E. faecalis strain (ATCC 29212) to develop a 3-weeks-old biofilm. The dentin discs were exposed to group I—control group: 5.25% sodium hypochlorite (NaOCl) (n = 20); group II—1% ALX + 5.25% NaOCl (n = 40); group III—1% alexidine (ALX) (n = 40) (Sigma-Aldrich, Mumbai, India); group IV—negative control: saline (n = 20). After exposure, the dentin disks were stained with the fluorescent live/dead dye and evaluated with a confocal scanning electron microscope to calculate the proportion of dead cells. Statistical analysis was done using the Kruskal–Wallis and Mann–Whitney U test (p < 0.05). Results: The maximum proportion of dead cells were seen in the groups treated with the combination of 1% ALX + 5.25% NaOCl (94.89%) and in the control group 5.25% NaOCl (93.14%). The proportion of dead cells presented in the 1% ALX group (51.79%) and negative control group saline (15.10%) were comparatively less. Conclusion: The antibacterial efficiency of a combination of 1% ALX and 5.25% NaOCl was more effective when compared with 1% ALX alone. Clinical significance: Alexidine at 1% could be used as an alternative endodontic irrigant to chlorhexidine, as alexidine does not form any toxic precipitates with sodium hypochlorite. The disinfection regimen comprising a combination of 1% ALX and 5.25% NaOCl is effective in eliminating E. faecalis biofilms.


PDF Share
  1. Haapasalo M, Endal U, et al. Eradication of endodontic infection by instrumentation and irrigation solutions. Endod Top 2005;10:77–102. DOI: 10.1111/j.1601-1546.2005.00135.x.
  2. Sjogren U, Figdor D, et al. Influence of infection at the time of root filling on the outcome of endodontic treatment of teeth with apical periodontitis. Int Endod J 1997;30:297–306. DOI: 10.1111/j.1365-2591.1997.tb00714.x.
  3. Zehnder M. Root canal irrigants. J Endod 2006;32:389–398. DOI: 10.1016/j.joen.2005.09.014.
  4. Sirén EK, Haapasalo MPP, et al. Microbiological findingsand clinical treatment procedures in endodontic cases selected for microbiologicalinvestigation. Int Endod J 1997;30:90–95. DOI: 10.1111/j.1365-2591.1997.tb00680.x.
  5. Stuart CH, Schwartz SA, et al. Enterococcus faecalis: its role in root canal treatment failure and current concepts in retreatment. J Endod 2005;32:93–98. DOI: 10.1016/j.joen.2005.10.049.
  6. Peters OA. Current challenges and concepts in the preparation of root canal systems: a review. J Endod 2004;30:559–567. DOI: 10.1097/01.DON.0000129039.59003.9D.
  7. Orstavik D, Haapasalo M. Disinfection by endodontic irrigants and dressings of experimentally infected dentinal tubules. Endod Dent Traumatol 1990;6:142–149. DOI: 10.1111/j.1600-9657.1990.tb00409.x.
  8. Kuruvilla JR, Kamath MP. Antimicrobial activity of 2.5% sodium hypochlorite and 0.2% chlorhexidine gluconate separately and combined, as endodontic irrigants. J Endod 1998;24:472–476. DOI: 10.1016/S0099-2399(98)80049-6.
  9. Ohara P, Torabinejad M, et al. Antibacterial effects of various endodontic irrigants on selected anaerobic bacteria. Endod Dent Traumatol 1993;9:95–100. DOI: 10.1111/j.1600-9657.1993.tb00258.x.
  10. White RR, Hays GL, et al. Residual antimicrobial activity after canal irrigation with chlorhexidine. J Endod 1997;23:229–231. DOI: 10.1016/S0099-2399(97)80052-0.
  11. Jeansonne MJ, White RR. A comparison of 2.0% chlorhexidine gluconate and 5.25% sodium hypochlorite as antimicrobial endodontic irrigants. J Endod 1994;20:276–278. DOI: 10.1016/S0099-2399(06)80815-0.
  12. Ferguson JW, Hatton JF, et al. Effectiveness of intracanal irrigants and medicationsagainst the yeast Candida albicans. J Endod 2002;28: 68–71. DOI: 10.1097/00004770-200202000-00004.
  13. Bui T, Baumgartner C, et al. Evaluation of the interaction between sodium hypochlorite and chlorhexidine gluconate and its effect on root dentin. J Endod 2008;34:181–185. DOI: 10.1016/j.joen.2007.11.006.
  14. Krishnamurthy S, Sudhakaran S. Evaluation and prevention of the precipitate formed on interaction between sodium hypochlorite and chlorhexidine. J Endod 2010;36:1154–1157. DOI: 10.1016/j.joen.2010.01.012.
  15. Zorko M, Jerala R. Alexidine and chlorhexidine bind to lipopolysaccharide and lipoteichoic acid and prevent cell activation by antibiotics. J Antimicrob Chemother 2008;62:730–737. DOI: 10.1093/jac/dkn270.
  16. McDonnell G, Russell AD. Antiseptics and disinfectants: activity, action and resistance. Clin Microbiol Rev 1999;12:147–179. DOI: 10.1128/CMR.12.1.147.
  17. Roberts WR, Addy M. Comparison of the bisbiguanide antiseptics alexidine and chlorhexidine: I. Effect on plaque accumulation and salivary bacteria. J Clin Periodontol 1981;8:213–219. DOI: 10.1111/j.1600-051X.1981.tb02032.x.
  18. Yanai R, Ueda K, et al. Effects of tonicity-adjusting and surfactant agents on the antimicrobial activity of alexidine. Eye Contact Lens 2011;37:57–60. DOI: 10.1097/ICL.0b013e31820ca361.
  19. Kim HS, Zhu Q, et al. Chemical Interaction of Alexidine and Sodium Hypochlorite. J Endod 2012;38:112–116. DOI: 10.1016/j.joen.2011.10.003.
  20. Sena NT, Gomes BPFA, et al. In vitro antimicrobial activity of sodium hypochlorite and chlorhexidine against selected single-species biofilms. Int Endod J 2006;39:878–885. DOI: 10.1111/j.1365-2591.2006.01161.x.
  21. Liu H, Wei X, et al. Biofilm formation capability of Enterococcus faecalis cells in starvation phase and its susceptibility to sodium hypochlorite. J Endod 2010;4:630–635. DOI: 10.1016/j.joen.2009.11.016.
  22. Santos RP, Arruda TTP, et al. Correlation between Enterococcus faecalis biofilms development stage and quantitative surface roughness using atomic force microscopy. Microsc Microanal 2008;14:150–158. DOI: 10.1017/S1431927608080227.
  23. Shen Y, Stojicic S, et al. Antimicrobial efficacy of chlorhexidine against bacteria in biofilms at different stages of development. J Endod 2011;37:657–661. DOI: 10.1016/j.joen.2011.02.007.
  24. Bhuva B, Patel S, et al. The effectiveness of passive ultrasonic irrigation on intraradicular Enterococcus faecalis biofilms in extracted single-rooted human teeth. Int Endod J 2010;43:241–250. DOI: 10.1111/j.1365-2591.2009.01672.x.
  25. Svensäter G, Bergenholtz G. Biofilms in endodontic infections. Endod Topics 2004;9:27–36. DOI: 10.1111/j.1601-1546.2004.00112.x.
  26. Williamson AE, Cardon JW, et al. Antimicrobial susceptibility of monocultures biofilms of a clinical isolate of Enterococcus faecalis. J Endod 2009;35:95–97. DOI: 10.1016/j.joen.2008.09.004.
  27. McDonnell G, Russell AD. Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev 2001;14:227.
  28. Varadan P, Ganesh A, et al. Comparison of the Antibacterial Efficacy of Alexidine and Chlorhexidine Against Enterococcus Faecalis: An In Vitro Study. Cureus 2017;9(10): e1805. DOI: 10.7759/cureus.1805.
  29. Kim HS, Woo Chang S, et al. Antimicrobial effect of alexidine and chlorhexidine against Enterococcus faecalis infection. Int J Oral Sci 2013;5:26–31. DOI: 10.1038/ijos.2013.11.
  30. Zorko M, Jerala R. Alexidine and chlorhexidine bind to lipopolysaccharide andlipoteichoic acid and prevent cell activation by antibiotics. J Antimicrob Chemother 2008;62:730–737. DOI: 10.1093/jac/dkn270.
  31. Roberts WR, Addy M. Comparison of the bisbiguanide antiseptics alexidine and chlorhexidine: I. Effect on plaque accumulation and salivary bacteria. J Clin Periodontol 1981;8:213–219. DOI: 10.1111/j.1600-051X.1981.tb02032.x.
  32. Barrios R, Ferrer-Luque CM, et al. Antimicrobial Substantivity of Alexidine and Chlorhexidine in Dentin. J Endod 2013;39:1413–1415. DOI: 10.1016/j.joen.2013.07.038.
  33. Jain K, Agarwal P, et al. Alexidine vs chlorhexidine for endodontic irrigation with sodium hypochlorite. Eur J Dent 2018;12:398. DOI: 10.4103/ejd.ejd_180_17.
  34. Du T, Wang Z, et al. Effect of long-term exposure to endodontic disinfecting solutions on young and old Enterococcus faecalis biofilms in dentin canals. J Endod 2014;40:509–514. DOI: 10.1016/j.joen.2013.11.026.
  35. Wang Z, Shen Y, et al. Effectiveness of endodontic disinfecting solutions against young and old Enterococcus faecalis biofilms in dentin canals. J Endod 2012;38:1376–1379. DOI: 10.1016/j.joen.2012.06.035.
  36. Bukhary S, Balto H. Antibacterial Efficacy of Octenisept, Alexidine, Chlorhexidine, and Sodium Hypochlorite against Enterococcus faecalis Biofilms. J Endod 2017;43:643–647. DOI: 10.1016/j.joen.2016.09.013.
  37. Varadan P, Ganesh A, et al. Comparison of the Antibacterial Efficacy of Alexidine and Chlorhexidine Against Enterococcus Faecalis: An in vitro Study. Cureus 2017;9(10):e1805. DOI: 10.7759/cureus.1805.
  38. Zapata RO, Bramante CM, et al. Confocal laser scanning electron microscopy is appropriate to detect viability of Enterococcus faecalis in infected dentin. J Endod 2008;34:1198–1201. DOI: 10.1016/j.joen.2008.07.001.
  39. Hubble TS, Hatton JF, et al. Influence of Enterococcus faecalis proteases and the collagen binding protein, Ace on adhesion to dentin. Oral Microbiol Immunol 2003;18:121–126. DOI: 10.1034/j.1399-302X.2003.00059.x.
  40. Arias- Moliz MT, Ferrer-Luque CM, et al. Enterococcus faecalis biofilms eradication by root canal irrigants. J Endod 2009;35:711–714. DOI: 10.1016/j.joen.2009.01.018.
  41. Swimberghe RCD, Coeyne T, et al. Biofilm model systems for root canal disinfection: a literature review. Int Endod J 2018;52:604–628. DOI: 10.1111/iej.13050.
  42. Watson TF. Fact and artefact in confocal microscopy. Adv Dent Res 1997;11:433–441. DOI: 10.1177/08959374970110040901.
  43. Tan CH, Lee KW, et al. All together now: experimental multispecies biofilm model systems. Environ Microbiol 2017;19:42–53. DOI: 10.1111/1462-2920.13594.
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.