The Journal of Contemporary Dental Practice

Register      Login



Volume / Issue

Online First

Related articles

VOLUME 21 , ISSUE 10 ( October, 2020 ) > List of Articles


Sealing Ability of Calcium Silicate-based Materials in the Repair of Furcal Perforations: A Laboratory Comparative Study

Michèle Makhlouf, Carla Zogheib, Anne-Christelle Makhlouf, Marc Krikor Kaloustian, Claire El Hachem, Marc Habib

Keywords : Biodentine, Calcium silicate material, Dye penetration, Furcal perforations, MTA Angelus, Sealing ability

Citation Information : Makhlouf M, Zogheib C, Makhlouf A, Kaloustian MK, El Hachem C, Habib M. Sealing Ability of Calcium Silicate-based Materials in the Repair of Furcal Perforations: A Laboratory Comparative Study. J Contemp Dent Pract 2020; 21 (10):1091-1097.

DOI: 10.5005/jp-journals-10024-2953

License: CC BY-NC 4.0

Published Online: 08-01-2021

Copyright Statement:  Copyright © 2020; Jaypee Brothers Medical Publishers (P) Ltd.


Aim: To assess the sealing ability of two calcium silicate-based materials in the treatment of iatrogenic furcal perforations using a dye-penetration leakage model. Materials and methods: Furcation perforations were performed using a size 12 round burr on the pulp chamber floor of 20 first mandibular molars. The teeth were then randomly divided into two groups, two additional molars served as negative controls. The defects were then filled with mineral trioxide aggregate (MTA) Angelus in the first group and Biodentine in the second group. Leakage at the repaired sites was then evaluated using the methylene blue dye penetration technique. Results: Significant differences in microleakage were found between the two groups at 72 hours (p < 0.001). MTA Angelus had greater dye penetration than Biodentine with a statistically significant difference. Subsequently, the sealing ability of Biodentine was significantly better than MTA Angelus (p < 0.001). However, the mean values of leakage and inadequate adhesion were significantly different from the theoretical value for both the MTA Angelus (p < 0.001) and Biodentine (p < 0.001). Conclusion: The current results suggested that Biodentine possesses higher sealing quality than MTA Angelus. Yet, both materials are not ideal and still need improvement to ensure perfect adhesion in case of furcal perforation. Clinical significance: This article aims to compare the sealing ability of one dental repair material over another, after iatrogenically producing a furcal perforation. Leakage resistance and sealing ability are important factors in favoring the outcome of an endodontic treatment of a tooth that could otherwise be condemned for extraction.

PDF Share
  1. Zambon da Silva P, Carlos Ribeiro F, Machado Barroso Xavier J, et al. Radiographic evaluation of root canal treatment performed by undergraduate students, part I; Iatrogenic Errors. Iran Endod J. 2018;13(1):30–36.
  2. Bru E, Forner L, Llena C, et al. Fibre post behaviour prediction factors. A review of the literature. J Clin Exp Dent 2013;5(3):150–153. DOI: 10.4317/jced.50619.
  3. Alrahabi M, Zafar MS, Adanir N. Aspects of clinical malpractice in endodontics. Eur J Dent 2019;13(3):450–458. DOI: 10.1055/s-0039-1700767.
  4. Imura N, Otani SM, Hata G, et al. Sealing ability of composite resin placed over calcium hydroxide and calcium sulphate plugs in the repair of furcation perforations in mandibular molars: a study in vitro. Int Endod J 1998;31(2):79–84. DOI: 10.1046/j.1365-2591.1998.00112.x.
  5. da Silva GF, Guerreiro-Tanomaru JM, Sasso-Cerri E, et al. Histological and histomorphometrical evaluation of furcation perforations filled with MTA, CPM and ZOE. Int Endod J 2011;44(2):100–110. DOI: 10.1111/j.1365-2591.2010.01803.x.
  6. Mohammadi Z, Shalavi S. Clinical applications of glass ionomers in endodontics: a review. Int Dent J 2012;62(5):244–250. DOI: 10.1111/j.1875-595x.2012.00125.x.
  7. Kakani AK, Veeramachaneni C, Majeti C, et al. A review on perforation repair materials. J Clin Diagn Res 2015;9(9):09–13. DOI: 10.7860/JCDR/2015/13854.6501.
  8. Sandikci T, Kaptan RF. Comparative evaluation of the fracture resistances of endodontically treated teeth filled using five different root canal filling systems. Niger J Clin Pract 2014;17(6):667–672. DOI: 10.4103/1119-3077.144375.
  9. Oliveira RR, Tavares WLF, Reis AL, et al. Cytokine expression in response to root repair agents. Int Endod J 2018;51(11):1253–1260. DOI: 10.1111/iej.12944.
  10. Gandolfi MG, Taddei P, Tinti A, et al. Apatite-forming ability (bioactivity) of ProRoot MTA. Int Endod J 2010;43(10):917–929. DOI: 10.1111/j.1365-2591.2010.01768.x.
  11. Gandolfi MG, Siboni F, Primus CM, et al. Ion release, porosity, solubility, and bioactivity of MTA plus tricalcium silicate. J Endod 2014;40(10):1632–1637. DOI: 10.1016/j.joen.2014.03.025.
  12. Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review--part III: clinical applications, drawbacks, and mechanism of action. J Endod 2010;36(3):400–413. DOI: 10.1016/j.joen.2009.09.009.
  13. Siboni F, Taddei P, Prati C, et al. Properties of NeoMTA plus and MTA plus cements for endodontics. Int Endod J 2017;50(2):83–94. DOI: 10.1111/iej.12787.
  14. Silva LAB, Pieroni KAMG, Nelson-Filho P, et al. Furcation perforation: periradicular tissue response to Biodentine as a repair material by histopathologic and indirect immunofluorescence analyses. J Endod 2017;43(7):1137–1142. DOI: 10.1016/j.joen.2017.02.001.
  15. Mente J, Hufnagel S, Leo M, et al. Treatment outcome of mineral trioxide aggregate or calcium hydroxide direct pulp capping: long-term results. J Endod 2014;40(11):1746–1751. DOI: 10.1016/j.joen.2014.07.019.
  16. Prati C, Siboni F, Polimeni A, et al. Use of calcium-containing endodontic sealers as apical barrier in fluid-contaminated wide-open apices. J Appl Biomater Funct Mater 2014;12(3):263–270. DOI: 10.5301/jabfm.5000162.
  17. Torabinejad M, Parirokh M, Dummer PMH. Mineral trioxide aggregate and other bioactive endodontic cements: an updated overview - part II: other clinical applications and complications. Int Endod J. 2018;51(3):284–317. DOI: 10.1111/iej.12843.
  18. Quintana RM, Jardine AP, Grechi TR, et al. Bone tissue reaction, setting time, solubility, and pH of root repair materials. Clin Oral Investig 2019;23(3):1359–1366. DOI: 10.1007/s00784-018-2564-1.
  19. Camilleri J. Investigation of Biodentine as dentine replacement material. J Dent 2013;41(7):600–610. DOI: 10.1016/j.jdent.2013.05.003.
  20. Grech L, Mallia B, Camilleri J. Characterization of set intermediate restorative material, Biodentine, Bioaggregate and a prototype calcium silicate cement for use as root-end filling materials. Int Endod J 2013;46(7):632–641. DOI: 10.1111/iej.12039.
  21. Krupp C, Bargholz C, Brüsehaber M, et al. Treatment outcome after repair of root perforations with mineral trioxide aggregate: a retrospective evaluation of 90 teeth. J Endod 2013;39(11):1364–1368. DOI: 10.1016/j.joen.2013.06.030.
  22. Kini A, Shetty S, Bhat R, et al. Microleakage evaluation of an alkasite restorative material: an in vitro dye penetration study. J Contemp Dent Pract 2019;20(11):1315–1318. DOI: 10.5005/jp-journals-10024-2720.
  23. Laurent P, Camps J, About I. Biodentine (TM) induces TGF-β1 release from human pulp cells and early dental pulp mineralization. Int Endod J 2012;45(5):439–448. DOI: 10.1111/j.1365-2591.2011.01995.x.
  24. Zhou H, Shen Y, Wang Z, et al. In vitro cytotoxicity evaluation of a novel root repair material. J Endod 2013;39(4):478–483. DOI: 10.1016/j.joen.2012.11.026.
  25. Lertmalapong P, Jantarat J, Srisatjaluk RL, et al. Bacterial leakage and marginal adaptation of various bioceramics as apical plug in open apex model. J Investig Clin Dent 2019;10(1):123–171. DOI: 10.1111/jicd.12371.
  26. Nowicka A, Lipski M, Parafiniuk M, et al. Response of human dental pulp capped with Biodentine and mineral trioxide aggregate. J Endod 2013;39(6):743–747. DOI: 10.1016/j.joen.2013.01.005.
  27. Song GY, Li G, Lu WH, et al. Distortion and magnification of four digital cephalometric units. Niger J Clin Pract 2019;22(12):1644–1653. DOI: 10.4103/njcp.njcp_184_19.
  28. Estrela C, Decurcio DA, Rossi-Fedele G, et al. Root perforations: a review of diagnosis, prognosis and materials. Braz Oral Res 2018;32(1):73. DOI: 10.1590/1807-3107bor-2018.vol32.0073.
  29. Gorni FG, Andreano A, Ambrogi F, et al. Patient and clinical characteristics associated with primary healing of iatrogenic perforations after root canal treatment: results of a long-term Italian study. J Endod 2016;42(2):211–215. DOI: 10.1016/j.joen.2015.11.006.
  30. Askerbeyli Örs S, Aksel H, Küçükkaya Eren S, et al. Effect of perforation size and furcal lesion on stress distribution in mandibular molars: a finite element analysis. Int Endod J 2019;52(3):377–384. DOI: 10.1111/iej.13013.
  31. Patel N, Patel K, Baba SM, et al. Comparing gray and white mineral trioxide aggregate as a repair material for furcation perforation: an in vitro dye extraction study. J Clin Diagn Res 2014;8(10):70–73. DOI: 10.7860/JCDR/2014/9517.5046.
  32. De-Deus G, Petruccelli V, Gurgel-Filho E, et al. MTA versus Portland cement as repair material for furcal perforations: a laboratory study using a polymicrobial leakage model. Int Endod J 2006;39(4):293–298. DOI: 10.1111/j.1365-2591.2006.01096.x.
  33. Shahi S, Rahimi S, Hasan M, et al. Sealing ability of mineral trioxide aggregate and Portland cement for furcal perforation repair: a protein leakage study. J Oral Sci 2009;51(4):601–606. DOI: 10.2334/josnusd.51.601.
  34. Antunes HS, Gominho LF, Andrade-Junior CV, et al. Sealing ability of two root-end filling materials in a bacterial nutrient leakage model. Int Endod J 2016;49(10):960–965. DOI: 10.1111/iej.12543.
  35. Camps J, Pashley D. Reliability of the dye penetration studies. J Endod 2003;29(9):592–594. DOI: 10.1097/00004770-200309000-00012.
  36. Kaya S, Yiğit Özer S, Adigüzel Ö, et al. Comparison of apical microleakage of dual-curing resin cements with fluid-filtration and dye extraction techniques. Med Sci Monit 2015;21(1):937–944.
  37. De-Deus G, Murad C, Paciornik S, et al. The effect of the canal-filled area on the bacterial leakage of oval-shaped canals. Int Endod J 2008;41(3):183–190. DOI: 10.1111/j.1365-2591.2007.01320.x.
  38. Gupta PK, Garg G, Kalita C, et al. Evaluation of sealing ability of Biodentine as retrograde filling material by using two different manipulation methods: an in vitro study. J Int Oral Health 2015;7(7):111–114.
  39. Ravichandra PV, Vemisetty H, Deepthi K, et al. Comparative evaluation of marginal adaptation of Biodentine (TM) and other commonly used root end filling materials-an invitro study. J Clin Diagn Res 2014;8(3):243–245.
  40. Hashem AA, Hassanien EE. ProRoot MTA, MTA-angelus and IRM used to repair large furcation perforations: sealability study. J Endod 2008;34(1):59–61. DOI: 10.1016/j.joen.2007.09.007.
  41. Lolayekar N, Bhat SS, Hegde S. Sealing ability of ProRoot MTA and MTA-angelus simulating a one-step apical barrier technique--an in vitro study. J Clin Pediatr Dent 2009;33(4):305–310. DOI: 10.17796/jcpd.33.4.gp472416163h7818.
  42. Gurucharan BJ. Comparison of sealing ability of bioactive bone cement, mineral trioxide aggregate and super EBA as furcation repair materials: a dye extraction study. J Conserv Dent 2013;16(3):247–251. DOI: 10.4103/0972-0707.111326.
  43. Soundappan S, Sundaramurthy JL, Raghu S, et al. Biodentine versus mineral trioxide aggregate versus intermediate restorative material for retrograde root end filling: an invitro study. J Dent 2014;11(2): 143–149.
  44. Jeevani E, Jayaprakash T, Bolla N, et al. Evaluation of sealing ability of MM-MTA, Endosequence, and Biodentine as furcation repair materials: UV spectrophotometric analysis. J Conserv Dent 2014;17(4):340–343. DOI: 10.4103/0972-0707.136449.
  45. El Sayed MA, Etemadi H. Coronal discoloration effect of three endodontic sealers: An in vitro spectrophotometric analysis. J Conserv Dent 2013;16(4):347–351. DOI: 10.4103/0972-0707. 114369.
  46. Madani Z, Alvandifar S, Bizhani A. Evaluation of tooth discoloration after treatment with mineral trioxide aggregate, calcium-enriched mixture, and Biodentine® in the presence and absence of blood. Dent Res J 2019;16(6):377–383. DOI: 10.4103/1735-3327.270787.
  47. Nepal M, Shubham S, Tripathi R, et al. Spectrophotometric analysis evaluating apical microleakage in retrograde filling using GIC, MTA and Biodentine: an in-vitro study. BMC Oral Health 2020;20(1):37. DOI: 10.1186/s12903-020-1025-9.
  48. Samuel A, Asokan S, Geetha Priya PR, et al. Evaluation of sealing ability of Biodentine™ and mineral trioxide aggregate in primary molars using scanning electron microscope: a randomized controlled in vitro trial. Contemp Clin Dent 2016;7(3):322–325. DOI: 10.4103/0976-237X.188547.
  49. Raghavendra SS, Jadhav GR, Gathani KM, et al. Bioceramics in endodontics - a review. J Istanb Univ Fac Dent 2017;51(3 Suppl):S128–S137. DOI: 10.17096/jiufd.63659.
  50. Hamad HA, Tordik PA, McClanahan SB. Furcation perforation repair comparing gray and white MTA: a dye extraction study. J Endod 2006;32(4):337–340. DOI: 10.1016/j.joen.2005.10.002.
  51. Solanki NP, Venkappa KK, Shah NC. Biocompatibility and sealing ability of mineral trioxide aggregate and Biodentine as root-end filling material: a systematic review. J Conserv Dent 2018;21(1):10–15.
  52. Samiee M, Eghbal MJ, Parirokh M, et al. Repair of furcal perforation using a new endodontic cement. Clin Oral Investig 2010;14(6):653–658. DOI: 10.1007/s00784-009-0351-8.
  53. Tang Y, Li X, Yin S. Outcomes of MTA as root-end filling in endodontic surgery: a systematic review. Quintessence Int 2010;41(7):557–566.
  54. Butt N, Talwar S, Chaudhry S, et al. Comparison of physical and mechanical properties of mineral trioxide aggregate and Biodentine. Indian J Dent Res 2014;25(6):692–697. DOI: 10.4103/0970-9290.152163.
  55. Sinkar RC, Patil SS, Jogad NP, et al. Comparison of sealing ability of ProRoot MTA, RetroMTA, and Biodentine as furcation repair materials: an ultraviolet spectrophotometric analysis. J Conserv Dent 2015;18(6):445–448. DOI: 10.4103/0972-0707.168803.
  56. Tanalp J, Karapınar-Kazandağ M, Dölekoğlu S, et al. Comparison of the radiopacities of different root-end filling and repair materials. Sci World J 2013;59(2):49–50. DOI: 10.1155/2013/594950.
  57. Malkondu Ö, Karapinar Kazandağ M, Kazazoğlu E. A review on Biodentine, a contemporary dentine replacement and repair material. Biomed Res Int 2014;16(9):51. DOI: 10.1155/2014/160951.
  58. Bhavya B, Sadique M, Simon EP, et al. Spectrophotometric analysis of coronal discoloration induced by white mineral trioxide aggregate and Biodentine: an in vitro study. J Conserv Dent 2017;20(4):237–240. DOI: 10.4103/0972-0707.219203.
  59. Camilleri J. Color stability of white mineral trioxide aggregate in contact with hypochlorite solution. J Endod 2014;40(3):436–440. DOI: 10.1016/j.joen.2013.09.040.
  60. Beatty H, Svec T. Quantifying coronal tooth discoloration caused by Biodentine and EndoSequence root repair material. J Endod 2015;41(12):2036–2039. DOI: 10.1016/j.joen.2015.08.032.
  61. Marconyak LJ, Kirkpatrick TC, Roberts HW, et al. A comparison of coronal tooth discoloration elicited by various endodontic reparative materials. J Endod 2016;42(3):470–473. DOI: 10.1016/j.joen.2015.10.013.
  62. Shah T, Banga KS. Effect of commonly used irrigants on the colour stabilities of two calcium-silicate based material. Eur Oral Res 2019;53(3):141–145. DOI: 10.26650/eor.20190085.
  63. Kaur M, Singh H, Dhillon JS, et al. MTA versus Biodentine: review of literature with a comparative analysis. J Clin Diagn Res 2017;11(8):01–05. DOI: 10.7860/JCDR/2017/25840.10374.
  64. Silveira CM, Sánchez-Ayala A, Lagravère MO, et al. Repair of furcal perforation with mineral trioxide aggregate: long-term follow-up of 2 cases. J Can Dent Assoc 2008;74(8):729–733.
  65. Parirokh M, Torabinejad M, Dummer PMH. Mineral trioxide aggregate and other bioactive endodontic cements: an updated overview - part I: vital pulp therapy. Int Endod J 2018;51(2):177–205. DOI: 10.1111/iej.12841.
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.