The Journal of Contemporary Dental Practice

Register      Login

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue

Online First

Archive
Related articles

VOLUME 21 , ISSUE 7 ( July, 2020 ) > List of Articles

ORIGINAL RESEARCH

Antimicrobial Activity and Antiadherent Effect of Peruvian Psidium guajava (Guava) Leaves on a Cariogenic Biofilm Model

Pablo A Millones-Gómez, Dora Maurtua-Torres, Reyma Bacilio-Amaranto, Roger D Calla-Poma, Margarita F Requena-Mendizabal, Ana C Valderrama-Negron, Marco A Calderon-Miranda, Rubén A Calla-Poma, María E Huauya_Leuyacc

Citation Information : Millones-Gómez PA, Maurtua-Torres D, Bacilio-Amaranto R, Calla-Poma RD, Requena-Mendizabal MF, Valderrama-Negron AC, Calderon-Miranda MA, Calla-Poma RA, Huauya_Leuyacc ME. Antimicrobial Activity and Antiadherent Effect of Peruvian Psidium guajava (Guava) Leaves on a Cariogenic Biofilm Model. J Contemp Dent Pract 2020; 21 (7):733-740.

DOI: 10.5005/jp-journals-10024-2893

License: CC BY-NC 4.0

Published Online: 30-10-2020

Copyright Statement:  Copyright © 2020; The Author(s).


Abstract

Aim: Phytomedicine has been commonly practiced as a form of traditional medicine in various cultures for the treatment of oral diseases. Recently, it has gained importance as an alternative to conventional treatment. Several extracts of plants and fruits have been recently evaluated for their potential activity against microorganisms involved in the development of dental caries. The purpose of this study was to evaluate the antimicrobial activity and antiadherent effect of the crude organic extract (COE) and three partitions (aqueous, butanolic, and chloroformic) of Psidium guajava (guava) leaves on a cariogenic biofilm model. Materials and methods: Guava leaves were obtained from the mountains of northern Peru, where they grow wild and free of pesticides. The antimicrobial activity of the COEs and partitions against Streptococcus mutans and Streptococcus gordonii was determined by measuring the inhibition halos, while the effect on biofilm adhesion was determined by measuring the optical density using spectrophotometry. Results: An antibacterial effect of the COE and chloroformic partition against S. gordonii (p < 0.05) was found, as was a significant effect on biofilm adherence, with a minimum inhibitory concentration (MIC) of 0.78 mg/mL, which was maintained throughout the 7 days of evaluation. Conclusion: We conclude that the COEs and their chloroformic partition have antimicrobial and antibiotic effects against this strain of S. gordonii, making them of particular interest for evaluation as a promising alternative for the prevention of dental caries. Clinical significance: By knowing the antimicrobial effect of Psidium guajava, this substance can be effectively used in products aimed to prevent dental caries and periodontal disease.


HTML PDF Share
  1. Castro MR, Victoria FN, Oliveira DH, et al. Essential oil of Psidium cattleianum leaves: antioxidant and antifungal activity. Pharm Biol 2015;53(2):242–250. DOI: 10.3109/13880209.2014.914231.
  2. Dubey S. Comparative antimicrobial efficacy of herbal alternatives (Emblica officinalis, Psidium guajava), MTAD, and 2.5% sodium hypochlorite against Enterococcus faecalis: an in vitro study. J Oral Biol Craniofac Res 2016;6(1):45–48. DOI: 10.1016/j.jobcr.2015.12.010.
  3. Rodriguez-PeRez JL, Millones-Gomez PA. Antibacterial effect of Annona muricata L. Leaves on Streptococcus mutans ATCC 25175 strains. J Clin Diagn Res 2019;13(10):ZC13–ZC16. DOI: 10.7860/JCDR/2019/42089.13196.
  4. Becerra TB, Calla-Poma RD, Requena-Mendizabal MF, et al. Antibacterial effect of Peruvian propolis collected during different seasons on the growth of Streptococcus mutans. Open Dent J 2019;13(1):327–331. DOI: 10.2174/1874210601913010327.
  5. Saavedra SLA, Herrera-Plasencia P, Enoki-Miñano E, et al. In vitro antibacterial activity of an ethanolic extract of Prosopis pallida against Enterococcus faecalis ATCC 29212. Rev Cubana Med Trop 2018;70(2):1–12.
  6. Besra M, Kumar V. In vitro investigation of antimicrobial activities of ethnomedicinal plants against dental caries pathogens. 3 Biotech 2018;8(5):257. DOI: 10.1007/s13205-018-1283-2.
  7. Petrelli F, Scuri S, Grappasonni I, et al. Campaign manufacturing of highly active or sensitizing drugs: a comparison between the GMPs of various regulatory agencies. Clin Ter 2020;170(1):e66–e73. DOI: 10.7417/CT.2020.2191.
  8. Cao F, Liu J, Sha BX, et al. Natural products: experimental efficient agents for inflammatory bowel disease therapy. Curr Pharm Des 2019;25(46):4893–4913. DOI: 10.2174/1381612825666191216154224.
  9. Millones-Gómez P, Huamaní-Muñoz W. Efficacy of antibiotic therapy in reducing the frequency of dry socket single post exodontia. Randomized, controlled, single-blind clinical trial. Rev Esp Cir Oral Maxilofac 2016;38(4):181–187. DOI: 10.1016/j.maxilo.2014.04.004.
  10. Bodiba DC, Prasad P, Srivastava A, et al. Antibacterial activity of Azadirachta indica, Pongamia pinnata, Psidium guajava, and Mangifera indica and their mechanism of action against Streptococcus mutans. Pharmacogn Mag 2018;14(53):76–80. DOI: 10.4103/pm.pm_102_17.
  11. Shekar BR, Nagarajappa R, Singh R, et al. Antimicrobial efficacy of the combinations of Acacia nilotica, Murrayakoenigii (Linn.) Sprengel, Eucalyptus, and Psidiumguajava on primary plaque colonizers: an in vitro study. Indian J Dent Res 2016;27(4):415–420. DOI: 10.4103/0970-9290.191892.
  12. Vignesh R, Rekha CV, Baghkomeh PN, et al. Comparative evaluation of antimicrobial efficacy of an alternative natural agent for disinfection of toothbrushes. Eur J Dent 2017;11(1):111–116. DOI: 10.4103/ejd.ejd_196_16.
  13. Shafiei Z, Rahim ZHA, Philip K, et al. Potential effects of Psidium sp., Mangifera sp., Mentha sp. And its mixture (PEM) in reducing bacterial populations in biofilms, adherence and acid production of S. Sanguinis and S. Mutans. Arch Oral Biol 2020;109:104554. DOI: 10.1016/j.archoralbio.2019.104554.
  14. Mandava K, Batchu UR, Kakulavaram S, et al. Design and study of anticaries effect of different medicinal plants against S. mutans glucosyltransferase. BMC Complement Altern Med 2019;19(1):197. DOI: 10.1186/s12906-019-2608-3.
  15. Bhagavathy S, Mahendiran C, Kanchana R. Identification of glucosyl transferase inhibitors from Psidium guajava against Streptococcus mutans in dental caries. J Tradit Complement Med 2019;9(2):124–137. DOI: 10.1016/j.jtcme.2017.09.003.
  16. Silva EAJ, Estevam EBB, Silva TS, et al. Antibacterial and antiproliferative activities of the fresh leaf essential oil of Psidium guajava L. (Myrtaceae) Braz J Biol 2019;79(4):697–702. DOI: 10.1590/1519-6984.189089.
  17. Dias ALB, Batista HRF, Estevam EBB, et al. Chemical composition and in vitro antibacterial and antiproliferative activities of the essential oil from the leaves of Psidium myrtoides O. Berg (Myrtaceae) Nat Prod Res 2019;33(17):2566–2570. DOI: 10.1080/14786419.2018.1457664.
  18. Vieira DR, Amaral FM, Maciel MC, et al. Plant species used in dental diseases: ethnopharmacology aspects and antimicrobial activity evaluation. J Ethnopharmacol 2014;155(3):1441–1449. DOI: 10.1016/j.jep.2014.07.021.
  19. Brighenti FL, Gaetti-Jardim E, Jr, Danelon M, et al. Effect of Psidium cattleianum leaf extract on enamel demineralisation and dental biofilm composition in situ. Arch Oral Biol 2012;57(8):1034–1040. DOI: 10.1016/j.archoralbio.2012.02.009.
  20. Karygianni L, Al-Ahmad A, Argyropoulou A, et al. Natural antimicrobials and oral microorganisms: a systematic review on herbal interventions for the eradication of multispecies oral biofilms. Front Microbiol 2016;6:1529. DOI: 10.3389/fmicb.2015.01529.
  21. Mehta VV, Rajesh G, Rao A, et al. Antimicrobial efficacy of Punica granatum mesocarp, Nelumbo nucifera leaf, Psidium guajava leaf and Coffea canephora extract on common oral pathogens: an in-vitro study. J Clin Diagn Res 2014;8(7):ZC65–ZC68. DOI: 10.7860/JCDR/2014/9122.4629.
  22. König A, Schwarzinger B, Stadlbauer V, et al. Guava (Psidium guajava) fruit extract prepared by supercritical CO2 extraction inhibits intestinal glucose resorption in a double-blind, randomized clinical study. Nutrients 2019;11(7):1512. DOI: 10.3390/nu11071512.
  23. Shekar BR, Nagarajappa R, Jain R, et al. Antimicrobial efficacy of acacia nilotica, Murraya koenigii L. Sprengel, Eucalyptus hybrid, Psidium guajava extracts and their combinations on Fusobacterium nucleatum and Porphyromonas gingivalis. Indian J Dent Res 2018;29(5):641–645. DOI: 10.4103/ijdr.IJDR_52_17.
  24. Amaliya A, Risdiana AS, Van, et al. Effect of guava and vitamin C supplementation on experimental gingivitis: a randomized clinical trial. J Clin Periodontol 2018;45(8):959–967. DOI: 10.1111/jcpe.12922.
  25. Blanco-Olano J, Millones-Gómez PA. Cicatrizing effect of Aloe vera gel with Erythroxylum coca in animal model. Med Nat 2020;14(1):65–74.
  26. Singla S, Malhotra R, Nd S, et al. Antibacterial efficacy of mouthwash prepared from pomegranate, grape seed and guava extracts against oral Streptococci: an in vivo study. J Clin Pediatr Dent 2018;42(2): 109–113. DOI: 10.17796/1053-4628-42.2.5.
  27. Daswani PG, Gholkar MS, Birdi TJ. Psidium guajava: a single plant for multiple health problems of rural Indian population. Pharmacogn Rev 2017;11(22):167–174. DOI: 10.4103/phrev.phrev_17_17.
  28. Morais-Braga MFB, Carneiro JNP, Machado AJT, et al. Psidium guajava L., from ethnobiology to scientific evaluation: elucidating bioactivity against pathogenic microorganisms. J Ethnopharmacol 2016;194:1140–1152. DOI: 10.1016/j.jep.2016.11.017.
  29. Shafiei Z, Rahim ZHA, Philip K, et al. Antibacterial and anti-adherence effects of a plant extract mixture (PEM) and its individual constituent extracts (Psidium sp., Mangifera sp., and Mentha sp.) on single- and dual-species biofilms. PeerJ 2016;4:e2519. DOI: 10.7717/peerj. 2519.
  30. Ismail M, Minhas P, Khanum F, et al. Antibacterial activity of leaves extract of guava (Psidium guajava) Int J Res Pharm Biomed Sci 2012;3(1):1–2.
  31. Jain D, Dasar P, Nagarajappa S, et al. In vitro activity of ethanolic and water extract of guava leaves at various concentrations against Lactobacillus acidophilus. J Indian Assoc Public Health Dent 2014;12(3):232–236. DOI: 10.4103/2319-5932.144809.
  32. Shetty YS, Shankarapillai R, Vivekanandan G, et al. Evaluation of the efficacy of guava extract as an antimicrobial agent on periodontal pathogens. J Contemp Dent Pract 2018;19(6):690–697. DOI: 10.5005/jp-journals-10024-2321.
  33. Limsong J, Benjavongkulchai E, Kuvatanasuchati J. Inhibitory effect of some herbal extracts on adherence of Streptococcus mutans. J Ethnopharmacol 2004;92(2-3):281–289. DOI: 10.1016/j.jep.2004.03.008.
  34. Vasavi HS, Arun AB, Rekha PD. Anti-quorum sensing activity of Psidium guajava L. Flavonoids against Chromobacterium violaceum and Pseudomonas aeruginosa PAO1. Microbiol Immunol 2014;58(5): 286–293. DOI: 10.1111/1348-0421.12150.
  35. Nakasone N, Ogura Y, Higa N, et al. Effects of Psidium guajava leaf extract on secretion systems of gram-negative enteropathogenic bacteria. Microbiol Immunol 2018;62(7):644–653. DOI: 10.1111/1348-0421.12604.
  36. Ravi K, Divyashree P. Psidium guajava: a review on its potential as an adjunct in treating periodontal disease. Pharmacogn Rev 2014;8(16):96–100. DOI: 10.4103/0973-7847.134233.
  37. Kwamin F, Gref R, Haubek D, et al. Interactions of extracts from selected chewing stick sources with Aggregatibacter actinomycetemcomitans. BMC Res Notes 2012;5(1):203. DOI: 10.1186/1756-0500-5-203.
  38. Jebashree HS, Kingsley SJ, Sathish ES, et al. Antimicrobial activity of few medicinal plants against clinically isolated human cariogenic pathogens-an in vitro study. ISRN Dent 2011;2011:541421. DOI: 10.5402/2011/541421.
  39. Dhayalan A, Gracilla DE, Dela Peña RAJr, et al. Phytochemical constituents and antimicrobial activity of the ethanol and chloroform crude leaf extracts of Spathiphyllum cannifolium (Dryand. Ex Sims) Schott. J Pharm Bioallied Sci 2018;10(1):15–20. DOI: 10.4103/jpbs.JPBS_95_17.
  40. Vats M, Singh H, Sardana S. Phytochemical screening and antimicrobial activity of roots of Murraya koenigii (Linn.) Spreng (Rutaceae). Braz J Microbiol 2011;42(4):1569–1573. DOI: 10.1590/S1517-838220110004000044.
  41. Chinnici J, Yerke L, Tsou C, et al. A. Candida albicans cell wall integrity transcription factors regulate polymicrobial biofilm formation with Streptococcus gordonii. PeerJ 2019;7:e7870. DOI: 10.7717/peerj. 7870.
  42. Montelongo-Jauregui D, Saville SP, Lopez-Ribot JL. Contributions of Candida albicans dimorphism, adhesive interactions, and extracellular matrix to the formation of dual-species biofilms with Streptococcus gordonii. mBio 2019;10(3):e01179. DOI: 10.1128/mBio.01179-19.
  43. Robinson JC, Rostami N, Casement J, et al. ArcR modulates biofilm formation in the dental plaque colonizer Streptococcus gordonii. Mol Oral Microbiol 2018;33(2):143–154. DOI: 10.1111/omi.12207.
  44. Afrasiabi S, Pourhajibagher M, Chiniforush N, et al. Anti-biofilm and anti-metabolic effects of antimicrobial photodynamic therapy using chlorophyllin-phycocyanin mixture against Streptococcus mutans in experimental biofilm caries model on enamel slabs. Photodiagnosis Photodyn Ther 2020;29:101620. DOI: 10.1016/j.pdpdt.2019. 101620.
  45. Sun Y, Pan Y, Sun Y, et al. Effects of norspermidine on dual-species biofilms composed of Streptococcus mutans and Streptococcus sanguinis. Biomed Res Int 2019;2019:1950790. DOI: 10.1155/2019/1950790.
  46. Senpuku H, Tuna EB, Nagasawa R, et al. The inhibitory effects of polypyrrole on the biofilm formation of Streptococcus mutans. PLoS ONE 2019;14(11):e0225584. DOI: 10.1371/journal.pone.0225584.
  47. Horváth B, Balázs VL, Varga A, et al. A. Preparation, characterisation and microbiological examination of pickering nano-emulsions containing essential oils, and their effect on Streptococcus mutans biofilm treatment. Sci Rep 2019;9(1):16611. DOI: 10.1038/s41598-019-52998-6.
  48. Lobo CIV, Rinaldi TB, Christiano CMS, et al. Dual-species biofilms of Streptococcus mutans and Candida albicans exhibit more biomass and are mutually beneficial compared with single-species biofilms. J Oral Microbiol 2019;11(1):1581520. DOI: 10.1080/20002297.2019. 1581520.
  49. He Z, Huang Z, Jiang W, et al. Antimicrobial activity of cinnamaldehyde on Streptococcus mutans biofilms. Front Microbiol 2019;10:2241. DOI: 10.3389/fmicb.2019.02241.
  50. Lee YC, Cho SG, Kim SW, et al. Anticariogenic potential of Korean native plant extracts against Streptococcus mutans. Planta Med 2019;85(16):1242–1252. DOI: 10.1055/a-1013-1364.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.