The Journal of Contemporary Dental Practice

Register      Login



Volume / Issue

Online First

Related articles

VOLUME 21 , ISSUE 8 ( August, 2020 ) > List of Articles


Effect of Addition of Nano-TiO2, Nano-SiO2, and a Combination of Both, on Antimicrobial Activity of an Orthodontic Composite

Nazanin Kiomarsi, Paniz Zamani, Abbas Bahador, Sedighe S Hashemikamangar, Maryam Pourhajibagher, Mohammad J Kharazifard

Keywords : Antimicrobial activity, Nano-SiO2, Nano-TiO2, Orthodontic composite

Citation Information : Kiomarsi N, Zamani P, Bahador A, Hashemikamangar SS, Pourhajibagher M, Kharazifard MJ. Effect of Addition of Nano-TiO2, Nano-SiO2, and a Combination of Both, on Antimicrobial Activity of an Orthodontic Composite. J Contemp Dent Pract 2020; 21 (8):857-862.

DOI: 10.5005/jp-journals-10024-2929

License: CC BY-NC 4.0

Published Online: 30-09-2020

Copyright Statement:  Copyright © 2020; The Author(s).


Aim: This study aimed to assess the effect of addition of nano-titanium oxide (nano-TiO2), nano-silicon dioxide (nano-SiO2), and a combination of both, on antimicrobial activity of an orthodontic composite. Materials and methods: Molds measuring 0.64 × 0.5 mm were used for the fabrication of composite disks. For this purpose, 0.5% and 1% nano-TiO2, nano-SiO2, and a combination of both (0.5% nano-TiO2 and 0.5% nano-SiO2), were mixed with Transbond XT composite (3M Unitek). A total of 180 composite disks were fabricated for eluted component, disk agar diffusion (DAD), and biofilm inhibition tests. The colony counts of Streptococcus mutans (S. mutans), Streptococcus sanguinis (S. sanguinis), and Lactobacillus acidophilus (L. acidophilus) and the diameters of growth inhibition zones were measured at 3, 15, and 30 days after exposure to the materials. Data were analyzed using one-way ANOVA and a post hoc test. Results: None of the nano-TiO2 and nano-SiO2 concentrations had any significant effect on the growth inhibition zone. All tested concentrations of nano-TiO2 and nano-SiO2 decreased the colony count of all bacteria. The composite sample containing both nano-TiO2 and nano-SiO2 had the greatest efficacy for reduction of S. mutans and S. sanguinis colony counts at all three time points. Also, 1% nano-TiO2 and 1% nano-SiO2 had similar effects on L. acidophilus in eluted component test. Conclusion: Addition of TiO2 and SiO2 nanoparticles conferred antimicrobial property to the tested orthodontic composite. Clinical significance: Using orthodontic composite containing nonoparticles with antibacterial activity may prevent dental caries.

  1. Freitas AO, Marquezan M, Nojima Mda C, et al. The influence of orthodontic fixed appliances on the oral microbiota: a systematic review. Dental Press J Orthod 2014;19(2):46–55. DOI: 10.1590/2176-9451.19.2.046-055.oar.
  2. Derks A, Katsaros C, Frencken JE, et al. Caries-inhibiting effect of preventive measures during orthodontic treatment with fixed appliances. A systematic review. Caries Res 2004;38(5):413–420. DOI: 10.1159/000079621.
  3. Cohen WJ, Wiltshire WA, Dawes C, et al. Long-term in vitro fluoride release and rerelease from orthodontic bonding materials containing fluoride. Am J Orthod Dentofacial Orthop 2003;124(5):571–576. DOI: 10.1016/S0889-5406(03)00573-0.
  4. Jedrychowski JR, Caputo AA, Kerper S. Antibacterial and mechanical properties of restorative materials combined with chlorhexidines. J Oral Rehabil 1983;10(5):373–381. DOI: 10.1111/j.1365-2842.1983.tb00133.x.
  5. Paschos E, Kurochkina N, Huth KC, et al. Failure rate of brackets bonded with antimicrobial and fluoride-releasing, self-etching primer and the effect on prevention of enamel demineralization. Am J Orthod Dentofacial Orthop 2009;135(5):613–620. DOI: 10.1016/j.ajodo.2008.01.016.
  6. Ribeiro J, Ericson D. In vitro antibacterial effect of chlorhexidine added to glass-ionomer cements. Scand J Dent Res 1991;99(6):533–540.
  7. Roberson T, Heymann HO, Swift Jr EJ. Sturdevant's art and science of operative dentistry. 5th ed., Elsevier Health Sciences; 2006. pp. 65–77.
  8. Sawai J. Quantitative evaluation of antibacterial activities of metallic oxide powders (ZNO, MGO and CAO) by conductimetric assay. J Microbiol Meth 2003;54(2):177–182. DOI: 10.1016/S0167-7012(03)00037-X.
  9. Jones N, Ray B, Ranjit KT, et al. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 2008;279(1):71–76. DOI: 10.1111/j.1574-6968.2007.01012.x.
  10. Ahn SJ, Lee SJ, Kook JK, et al. Experimental antimicrobial orthodontic adhesives using nanofillers and silver nanoparticles. Dent Mater 2009;25(2):206–213. DOI: 10.1016/
  11. Uysal T, Yagci A, Uysal B, et al. Are nano-composites and nano-ionomers suitable for orthodontic bracket bonding? Eur J Orthod 2010;32(1):78–82. DOI: 10.1093/ejo/cjp012.
  12. Hernández-Sierra JF, Ruiz F, Pena DC, et al. The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold. Nanomedicine 2008;4(3):237–240. DOI: 10.1016/j.nano.2008.04.005.
  13. Sodagar A, Akhoundi MS, Bahador A, et al. Effect of TiO2 nanoparticles incorporation on antibacterial properties and shear bond strength of dental composite used in orthodontics. Dental Press J Orthod 2017;22(5):67–74. DOI: 10.1590/2177-6709.22.5.067-074.oar.
  14. Haghi M, Hekmatafshar M, Janipour MB, et al. Antibacterial effect of TiO2 nanoparticles on pathogenic strain of E. coli. Int J Adv Biotechnol Res 2012;3(3):621–624.
  15. Sodagar A, Bahador A, Khalil S, et al. The effect of TiO2 and SiO2 nanoparticles on flexural strength of poly(methyl methacrylate) acrylic resins. J Prosthodont Res 2013;57(1):15–19. DOI: 10.1016/j.jpor.2012.05.001.
  16. Sodagar A, Khalil S, Kassaee MZ, et al. Antimicrobial properties of poly(methyl methacrylate) acrylic resins incorporated with silicon dioxide and titanium dioxide nanoparticles on cariogenic bacteria. J Orthod Sci 2016;5(1):7–13. DOI: 10.4103/2278-0203. 176652.
  17. Poosti M, Ramazanzadeh BA, Zabarjad M, et al. Shear bond strength and antibacterial effects of orthodontic composite containing TiO2 nanoparticles. Eur J Orthod 2013;35(5):676–679. DOI: 10.1093/ejo/cjs073.
  18. Kasraie S, Sami L, Hend S, et al. Antibacterial properties of composite resin incorporating silver and zinc oxide nanoparticles on streptococcus mutans and lactobacillus. Restor Dent Endod 2014;39(2):109–114. DOI: 10.5395/rde.2014.39.2.109.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.