The Journal of Contemporary Dental Practice

Register      Login



Volume / Issue

Online First

Related articles

VOLUME 21 , ISSUE 9 ( September, 2020 ) > List of Articles


Treatment of Intrabony Defects Using Equine-derived Bone Granules and Collagen Membranes: A Retrospective Study with a 13-year Follow-up

Giacomo Tarquini

Citation Information : Tarquini G. Treatment of Intrabony Defects Using Equine-derived Bone Granules and Collagen Membranes: A Retrospective Study with a 13-year Follow-up. J Contemp Dent Pract 2020; 21 (9):970-976.

DOI: 10.5005/jp-journals-10024-2924

License: CC BY-NC 4.0

Published Online: 20-01-2021

Copyright Statement:  Copyright © 2020; The Author(s).


Aim: The aim of this study is to investigate the effectiveness of a combination of an equine-derived, enzyme-treated bone graft and an equine collagen membrane to treat intrabony defects caused by periodontitis. Materials and methods: About 22 patients with a single 1-, 2-, or 3-wall intrabony defect and a probing pocket depth (PPD) of ≥5 mm, who were treated using an enzyme-deantigenated equine bone graft in addition to a collagen membrane and were followed up for at least 10 years, were retrospectively assessed. The plaque index (PI), the sulcus bleeding index (SBI), PPD, and the clinical attachment level (CAL) at each follow-up visit were compared to baseline. Results: The mean PI, SBI, PPD, and CAL were 0.22 ± 0.41, 1.86 ± 0.78, 7.86 ± 1.39 mm, and 8.84 ± 1.86 mm, respectively, at baseline, and 0.25 ± 0.44, 0.12 ± 0.32, 2.59 ± 0.50, and 4.04 ± 0.77 mm, respectively, at the last follow-up. The difference was significant for all parameters (p < 0.001) except PI (p = 0.83). The final CAL gain was 4.8 mm (49.8%). The SBI, PPD, and CAL still significantly improved at the 12-month follow-up visit but not at the 24-month follow-up visit. There were no correlations between either the number of defect walls or smoking and outcomes. In one case, a surgical re-entry at 5 years allowed a clinical evaluation, showing that intrabony defect was repaired with the newly formed bone of the patient. Conclusion: Equine bone granules in addition to an equine collagen membrane effectively and safely treated intrabony defects caused by periodontitis providing long-term results. Clinical significance: Equine-derived bone grafts have been in the market for more than 20 years. However, to the author's knowledge, no studies have reported long-term results for the use of this type of bone graft in periodontal surgery. The equine-derived bone granules used in the present study appears a promising option for treating intrabony defects due to moderate to severe periodontitis.

  1. Kinane DF, Stathopoulou PG, Papapanou PN. Periodontal diseases. Nat Rev Dis Primers 2017;3:17038. DOI: 10.1038/nrdp.2017.38.
  2. Graziani F, Karapetsa D, Alonso B, et al. Nonsurgical and surgical treatment of periodontitis: how many options for one disease? Periodontol 2000 2017;75(1):152–188. DOI: 10.1111/prd.12201.
  3. Cortellini P, Tonetti MS. Clinical concepts for regenerative therapy in intrabony defects. Periodontol 2000. 2015;68(1):282–307. DOI: 10.1111/prd.12048.
  4. Wu YC, Lin LK, Song CJ, et al. Comparisons of periodontal regenerative therapies: a meta-analysis on the long-term efficacy. J Clin Periodontol 2017;44(5):511–519. DOI: 10.1111/jcpe.12715.
  5. Needleman IG, Worthington HV, Giedrys-Leeper E, et al. Guided tissue regeneration for periodontal infra-bony defects. Cochrane Database Syst Rev 2006;2:CD001724. DOI: 10.1002/14651858.CD001724.pub2.
  6. Bottino MC, Thomas V. Membranes for periodontal regeneration--a materials perspective. Front Oral Biol 2015;17:90–100. DOI: 10.1159/000381699.
  7. Maurer T, Stoffel MH, Belyaev Y, et al. Structural characterization of four different naturally occurring porcine collagen membranes suitable for medical applications. PLoS ONE 2018;13(10):e0205027. DOI: 10.1371/journal.pone.0205027.
  8. Rothamel D, Schwarz F, Sager M, et al. Biodegradation of differently cross-linked collagen membranes: an experimental study in the rat. Clin Oral Implant Res 2005;16(3):369–378. DOI: 10.1111/j.1600-0501.2005.01108.x.
  9. Jiménez Garcia J, Berghezan S, Caramês JMM, et al. Effect of cross-linked vs non-cross-linked collagen membranes on bone: a systematic review. J Periodontal Res 2017;52(6):955–964. DOI: 10.1111/jre.12470.
  10. Delgado LM, Fuller K, Zeugolis DI. Collagen cross-linking: Biophysical, biochemical, and biological response analysis. Tissue Eng Part A 2017;23(19-20):1064–1077. DOI: 10.1089/ten.TEA.2016.0415.
  11. Sheikh Z, Qureshi J, Alshahrani AM, et al. Collagen based barrier membranes for periodontal guided bone regeneration applications. Odontology 2017;105(1):1–12. DOI: 10.1007/s10266-016-0267-0.
  12. Gigante A, Cecconi S, Calcagno S, et al. Arthroscopic knee cartilage repair with covered microfracture and bone marrow concentrate. Arthrosc Tech 2012;1(2):e175–e180. DOI: 10.1016/j.eats.2012.07.001.
  13. Enea D, Cecconi S, Calcagno S, et al. One-step cartilage repair in the knee: collagen-covered microfracture and autologous bone marrow concentrate. A pilot study. Knee 2015;22(1):30–35. DOI: 10.1016/j.knee.2014.10.003.
  14. Elkhatat EI, Elkhatat AE, Azzeghaiby SN, et al. Clinical and radiographic evaluation of periodontal intrabony defects by open flap surgery alone or in combination with Biocollagen membrane: a randomized clinical trial. J Int Soc Prev Community Dent 2015;5(3):190–198. DOI: 10.4103/2231-0762.159956.
  15. Di Stefano DA, Gastaldi G, Vinci R, et al. Histomorphometric comparison of enzyme-deantigenic equine bone and anorganic bovine bone in sinus augmentation: a randomized clinical trial with 3-year follow-up. Int J Oral Maxillofac Implants 2015;30(5):1161–1167. DOI: 10.11607/jomi.4057.
  16. Di Stefano DA, Gastaldi G, Vinci R, et al. Bone formation following sinus augmentation with an equine-derived bone graft: a retrospective histologic and histomorphometric study with 36-month follow-up. Int J Oral Maxillofac Implants 2016;31(2):406–412. DOI: 10.11607/jomi.4373.
  17. Ahmed M, Abu Shama A, Hamdy RM, et al. Bioresorbable versus titanium space-maintaining mesh in maxillary sinus floor elevation: a split-mouth study. Int J Oral Maxillofac Surg 2017;46(9):1178–1187. DOI: 10.1016/j.ijom.2017.04.001.
  18. Arosio P, Greco GB, Zaniol T, et al. Sinus augmentation and concomitant implant placement in low bone-density sites: a retrospective study on an undersized drilling protocol and primary stability. Clin Implant Dent Relat Res 2018;20(2):151–159. DOI: 10.1111/cid.12558.
  19. Uppada UK, Kalakonda B, Koppolu P, et al. Combination of hydroxyapatite, platelet rich fibrin and amnion membrane as a novel therapeutic option in regenerative periapical endodontic surgery: case series. Int J Surg Case Rep 2017;37:139–144. DOI: 10.1016/j.ijscr.2017.06.009.
  20. Stievano D, Di Stefano A, Ludovichetti M, et al. Maxillary sinus lift through heterologous bone grafts and simultaneous acid-etched implants placement. Five year follow-up. Minerva Chir 2008;63(2): 79–91.
  21. Tetè S, Zizzari VL, Vinci R, et al. Equine and porcine bone substitutes in maxillary sinus augmentation: a histological and immunohistochemical analysis of VEGF expression. J Craniofac Surg 2014;25(3):835–839. DOI: 10.1097/SCS.0000000000000679.
  22. Rivara F, Negri M, Lumetti S, et al. Maxillary sinus floor augmentation using an equine-derived graft material: preliminary results in 17 patients. Biomed Res Int 2017;2017:9164156. DOI: 10.1155/2017/9164156.
  23. Silness J, Loe H. Periodontal disease in pregnancy. II. Correlation between oral hygiene and periodontal condition. Acta Odntol Scand 1964;22:121–135. DOI: 10.3109/00016356408993968.
  24. Cortellini P, Prato GP, Tonetti MS. The modified papilla preservation technique. A new surgical approach for interproximal regenerative procedures. J Periodontol 1995;66(4):261–266. DOI: 10.1902/jop.1995.66.4.261.
  25. Cortellini P, Prato GP, Tonetti MS. The simplified papilla preservation flap. A novel surgical approach for the management of soft tissues in regenerative procedures. Int J Periodontics Restorative Dent 1999;19(6):589–599.
  26. Döri F, Arweiler NB, Szántó E, et al. Ten-year results following treatment of intrabony defects with an enamel matrix protein derivative combined with either a natural bone mineral or a β-tricalcium phosphate. J Periodontol 2013;84(6):749–757. DOI: 10.1902/jop.2012.120238.
  27. Trejo PM, Weltman R, Caffesse R. Treatment of intraosseous defects with bioabsorbable barriers alone or in combination with decalcified freeze-dried bone allograft: a randomized clinical trial. J Periodontol 2000;71(12):1852–1861. DOI: 10.1902/jop.2000.71.12.1852.
  28. Stavropoulos A, Karring ES, Kostopoulos L, et al. Deproteinized bovine bone and gentamicin as an adjunct to GTR in the treatment of intrabony defects: a randomized controlled clinical study. J Clin Periodontol 2003;30(6):486–495. DOI: 10.1034/j.1600-051x.2003.00258.x.
  29. Tonetti MS, Cortellini P, Lang NP, et al. Clinical outcomes following treatment of human intrabony defects with GTR/bone replacement material or access flap alone. A multicenter randomized controlled clinical trial. J Clin Periodontol 2004;31(9):770–776. DOI: 10.1111/j.1600-051X.2004.00562.x.
  30. Kao RT, Nares S, Reynolds MA. Periodontal regeneration - intrabony defects: a systematic review from the AAP regeneration workshop. J Periodontol 2015;86(2 Suppl):S77–S104. DOI: 10.1902/jop.2015.130685.
  31. Rattanasuwan K, Lertsukprasert K, Rassameemasmaung S, et al. Long-term outcome following regenerative periodontal treatment of intrabony defects. Odontology 2017;105(2):191–201. DOI: 10.1007/s10266-016-0250-9.
  32. Sculean A, Schwarz F, Chiantella GC, et al. Five-year results of a prospective, randomized, controlled study evaluating treatment of intra-bony defects with a natural bone mineral and GTR. J Clin Periodontol 2007;34(1):72–77. DOI: 10.1111/j.1600-051X.2006.01007.x.
  33. Stavropoulos A, Karring T. Guided tissue regeneration combined with a deproteinized bovine bone mineral (bio-Oss) in the treatment of intrabony periodontal defects: 6-year results from a randomized-controlled clinical trial. J Clin Periodontol 2010;37(2):200–210. DOI: 10.1111/j.1600-051X.2009.01520.x.
  34. Irokawa D, Takeuchi T, Noda K, et al. Clinical outcome of periodontal regenerative therapy using collagen membrane and deproteinized bovine bone mineral: A 2.5-year follow-up study. BMC Res Notes 2017;10(1):102. DOI: 10.1186/s13104-017-2426-y.
  35. Górski B, Jalowski S, Górska R, et al. Treatment of intrabony defects with modified perforated membranes in aggressive periodontitis: a 4-year follow-up of a randomized controlled trial. Clin Oral Investig 2020;24(3):1183–1196. DOI: 10.1007/s00784-019-02982-1.
  36. Döri F, Arweiler N, Húszár T, et al. Five-year results evaluating the effects of platelet-rich plasma on the healing of intrabony defects treated with enamel matrix derivative and natural bone mineral. J Periodontol 2013;84(11):1546–1555. DOI: 10.1902/jop.2013. 120501.
  37. Pretzl B, Kim TS, Holle R, et al. Long-term results of guided tissue regeneration therapy with non-resorbable and bioabsorbable barriers. IV. A case series of infrabony defects after 10 years. J Periodontol 2008;79(8):1491–1499. DOI: 10.1902/jop.2008.070571.
  38. Pretzl B, Kim TS, Steinbrenner H, et al. Guided tissue regeneration with bioabsorbable barriers III 10-year results in infrabony defects. J Clin Periodontol 2009;36(4):349–356. DOI: 10.1111/j.1600-051X.2009.01378.x.
  39. Nickles K, Ratka-Krüger P, Neukranz E, et al. Open flap debridement and guided tissue regeneration after 10 years in infrabony defects. J Clin Periodontol 2009;36(11):976–983. DOI: 10.1111/j.1600-051X.2009.01474.x.
  40. Nygaard-Østby P, Bakke V, Nesdal O, et al. Periodontal healing following reconstructive surgery: Effect of guided tissue regeneration using a bioresorbable barrier device when combined with autogenous bone grafting. A randomized-controlled trial 10-year follow-up. J Clin Periodontol 2010;37(4):366–373. DOI: 10.1111/j.1600-051X.2010.01532.x.
  41. Cortellini P, Pini-Prato G, Tonetti M. Periodontal regeneration of human infrabony defects (V). Effect of oral hygiene on long-term stability. J Clin Periodontol 1994;21(9):606–610. DOI: 10.1111/j.1600-051x.1994.tb00751.x.
  42. Foschi F, Conserva E, Pera P, et al. Graft materials and bone marrow stromal cells in bone tissue engineering. J Biomater Appl 2012;26(8):1035–1049. DOI: 10.1177/0885328210393046.
  43. Traini T, Valentini P, Iezzi G, et al. A histologic and histomorphometric evaluation of anorganic bovine bone retrieved 9 years after a sinus augmentation procedure. J Periodontol 2007;78(5):955–961. DOI: 10.1902/jop.2007.060308.
  44. Sartori S, Silvestri M, Forni F, et al. Ten-year follow-up in a maxillary sinus augmentation using anorganic bovine bone (bio-Oss). A case report with histomorphometric evaluation. Clin Oral Implants Res 2003;14(3):369–372. DOI: 10.1034/j.1600-0501.2003.140316.x.
  45. Mordenfeld A, Hallman M, Johansson CB, et al. Histological and histomorphometrical analyses of biopsies harvested 11 years after maxillary sinus floor augmentation with deproteinized bovine and autogenous bone. Clin Oral Implants Res 2010;21(9):961–970. DOI: 10.1111/j.1600-0501.2010.01939.x.
  46. Ayna M, Açil Y, Gulses A. Fate of a bovine-derived xenograft in maxillary sinus floor elevation after 14 years: histologic and radiologic analysis. Int J Periodontics Restorative Dent 2015;35(4):541–547. DOI: 10.11607/prd.2135.
  47. Matarasso S, Iorio Siciliano V, Aglietta M, et al. Clinical and radiographic outcomes of a combined resective and regenerative approach in the treatment of peri-implantitis: a prospective case series. Clin Oral Implants Res 2014;25(7):761–767. DOI: 10.1111/clr.12183.
  48. Tsitoura E, Tucker R, Suvan J, et al. Baseline radiographic defect angle of the intrabony defect as a prognostic indicator in regenerative periodontal surgery with enamel matrix derivative. J Clin Periodontol 2004;31(8):643–647. DOI: 10.1111/j.1600-051X.2004.00555.x.
  49. Javed F, Al-Rasheed A, Almas K, et al. Effect of cigarette smoking on the clinical outcomes of periodontal surgical procedures. Am J Med Sci 2012;343(1):78–84. DOI: 10.1097/MAJ.0b013e318228283b.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.