The Journal of Contemporary Dental Practice

Register      Login

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue

Online First

Archive
Related articles

VOLUME 21 , ISSUE 9 ( September, 2020 ) > List of Articles

CASE REPORT

Ridge Preservation Using a Novel Freeze-dried Enzyme-deantigenic Bone Paste: A Histomorphometric-retrospective Pilot Case Series

Andrea Salmaso, Elena Canciani, Daniele Graziano, Claudia Dellavia

Keywords : Bone formation, Equine bone substitutes, Freeze-dried bone paste, Post-extractive sockets, Ridge preservation, Three-dimensional collagen matrix, Xenograft

Citation Information : Salmaso A, Canciani E, Graziano D, Dellavia C. Ridge Preservation Using a Novel Freeze-dried Enzyme-deantigenic Bone Paste: A Histomorphometric-retrospective Pilot Case Series. J Contemp Dent Pract 2020; 21 (9):1059-1067.

DOI: 10.5005/jp-journals-10024-2925

License: CC BY-NC 4.0

Published Online: 22-01-2021

Copyright Statement:  Copyright © 2020; The Author(s).


Abstract

Aim and objective: The aim of this study is to provide preliminary retrospective evidence concerning the histologic and histomorphometric outcome of a novel freeze-dried equine-derived bone paste (EDEBEX) for ridge preservation of sockets following tooth extraction. Materials and methods: This pilot retrospective case series describes the histologic and histomorphometric outcome of three patients who received the equine-derived bone paste in post-extractive sockets to allow the preservation of the alveolar ridge. Patients were later rehabilitated with monolithic-zirconia, implant-supported prostheses. Results: All patients healed uneventfully. The collected biopsies showed a prevalence of bone formation at 4 months, compact lamellar bone, with well-defined lamellae surrounding Haversian and Volkmann's canals at 6 months, and an intermediate degree of maturation in active anabolic phase at 7 months after grafting. The amount of mineralized matrix was 63.3–70.7%, whereas medullar spaces were 26.0–30.7%. Conclusion: Histologic examination showed that the bone paste was fully biocompatible. Bone regeneration occurred within the first 4 months from grafting, with 63.3–70.7% mineralized bone matrix. The residual biomaterial, when present, did not exceed, on average, 2%. Clinical significance: Ridge preservation using bone substitutes as an alternative to autogenous bone is known to be effective. However, available clinical evidence still does not indicate the biomaterial, if any, that should be preferred to carry it out. The equine bone paste used in the present study appears to be a good candidate for further investigation because it is easy to handle in the clinical setting and it displays a good bone formation rate.


HTML PDF Share
  1. Van der Weijden F, Dell'Acqua F, Slot DE. Alveolar bone dimensional changes of post-extraction sockets in humans: a systematic review. J Clin Periodontol 2009;36(12):1048–1058. DOI: 10.1111/j.1600-051X.2009.01482.x.
  2. Araújo MG, Lindhe J. Ridge alterations following tooth extraction with and without flap elevation: an experimental study in the dog. Clin Oral Implants Res 2009;20(6):545–559. DOI: 10.1111/j.1600-0501.2008.01703.x.
  3. Rasperini G, Canullo L, Dellavia C, et al. Socket grafting in the posterior maxilla reduces the need for sinus augmentation. Int J Periodontics Restorative Dent 2010;30(3):265–273.
  4. De Risi V, Clementini M, Vittorini G, et al. Alveolar ridge preservation techniques: a systematic review and meta-analysis of histological and histomorphometrical data. Clin Oral Implants Res 2015;26(1):50–68. DOI: 10.1111/clr.12288.
  5. Misch CM. Maxillary autogenous bone grafting. Oral Maxillofac Surg Clin North Am 2011;23(2):229–238. DOI: 10.1016/j.coms.2011.01.003.
  6. Nkenke E, Weisbach V, Winckler E, et al. Morbidity of harvesting of bone grafts from the iliac crest for preprosthetic augmentation procedures: a prospective study. Int J Oral Maxillofac Surg 2004;33(2):157–163. DOI: 10.1054/ijom.2003.0465.
  7. Esposito M, Grusovin MG, Felice P, et al. Interventions for replacing missing teeth: horizontal and vertical bone augmentation techniques for dental implant treatment. Cochrane Database Syst Rev 2009;4:CD003607. DOI: 10.1002/14651858.CD003607.pub4.
  8. Aerssens J, Boonen S, Lowet G, et al. Interspecies differences in bone composition, density, and quality: potential implications for in vivo bone research. Endocrinology 1998;139(2):663–670. DOI: 10.1210/endo.139.2.5751.
  9. Zizzari VL, Zara S, Tetè G, et al. Biologic and clinical aspects of integration of different bone substitutes in oral surgery: a literature review. Oral Surg Oral Med Oral Pathol Oral Radiol 2016;122(4):392–402. DOI: 10.1016/j.oooo.2016.04.010.
  10. Baldini N, De Sanctis M, Ferrari M. Deproteinized bovine bone in periodontal and implant surgery. Dent Mater 2011;27(1):61–70. DOI: 10.1016/j.dental.2010.10.017.
  11. Jensen SS, Terheyden H. Bone augmentation procedures in localized defects in the alveolar ridge: clinical results with different bone grafts and bone-substitute materials. Int J Oral Maxillofac Implants 2009;24(Suppl):218–236.
  12. Benke D, Olah A, Möhler H. Protein-chemical analysis of bio-Oss bone substitute and evidence on its carbonate content. Biomaterials 2001;22(9):1005–1012. DOI: 10.1016/S0142-9612(00)00323-9.
  13. Felice P, Piana L, Checchi L, et al. Vertical ridge augmentation of an atrophic posterior mandible with an inlay technique and cancellous equine bone block: a case report. Int J Periodontics Restorative Dent 2013;33(2):159–166. DOI: 10.11607/prd.1098.
  14. Pistilli R, Signorini L, Pisacane A, et al. Case of severe bone atrophy of the posterior maxilla rehabilitated with blocks of equine origin bone: histological results. Implant Dent 2013;22(1):8–15. DOI: 10.1097/ID.0b013e3182777239.
  15. Di Stefano DA, Andreasi Bassi M, Cinci L, et al. Treatment of a bone defect consequent to the removal of a periapical cyst with equine bone and equine membranes: clinical and histological outcome. Minerva Stomatol 2012;61(11–12):477–490.
  16. Artese L, Piattelli A, Di Stefano DA, et al. Sinus lift with autologous bone alone or in addition to equine bone: an immunohistochemical study in man. Implant Dent 2011;20(5):383–388. DOI: 10.1097/ID.0b013e3182310b3d.
  17. De Angelis N, Scivetti M. Lateral ridge augmentation using an equine flex bone block infused with recombinant human platelet-derived growth factor BB: a clinical and histologic study. Int J Periodontics Restorative Dent 2011;31(4):383–388.
  18. Ludovichetti M, Di Stefano DA, Pagnutti S, et al. Vertical ridge augmentation using a flexible heterologous cortical bone sheet: Three-year follow-up. Int J Periodontics Restorative Dent 2011;31(4):401–407.
  19. Di Stefano DA, Artese L, Iezzi G, et al. Alveolar ridge regeneration with equine spongy bone: a clinical, histological, and immunohistochemical case series. Clin Implant Dent Relat Res 2009;11(2):90–100. DOI: 10.1111/j.1708-8208.2008.00104.x.
  20. Stievano D, Di Stefano A, Ludovichetti M, et al. Maxillary sinus lift through heterologous bone grafts and simultaneous acid-etched implants placement. five year follow-up. Minerva Chir 2008;63(2): 79–91.
  21. Santini S, Barbera P, Modena M, et al. Equine-derived bone substitutes in orthopedics and traumatology: authors’ experience. Minerva Chir 2011;66(1):63–72.
  22. Fontana F, Rocchietta I, Dellavia C, et al. Biocompatibility and manageability of a new fixable bone graft for the treatment of localized bone defect: preliminary study in a dog model. Int J Periodontics Restorative Dent 2008;28(6):601–607.
  23. Ten Heggeler JM, Slot DE, Van, et al. Effect of socket preservation therapies following tooth extraction in non-molar regions in humans: a systematic review. Clin Oral Implants Res 2011;22(8):779–788. DOI: 10.1111/j.1600-0501.2010.02064.x.
  24. Roddy E, DeBaun MR, Daoud-Gray A, et al. Treatment of critical-sized bone defects: Clinical and tissue engineering perspectives. Eur J Orthop Surg Traumatol 2018;28(3):351–362. DOI: 10.1007/s00590-017-2063-0.
  25. Giannoni P, Villa F, Cordazzo C, et al. Rheological properties, biocompatibility and in vivo performance of new hydrogel-based bone fillers. Biomater Sci 2016;4(11):1691–1703. DOI: 10.1039/C6BM00478D.
  26. Di Stefano DA, Arosio P, Cinci L, et al. Ridge preservation using an innovative enzyme-deantigenic equine bone paste: a case report with 36-month follow-up. J Contemp Dent Pract 2019;20(10):1229–1234. DOI: 10.5005/jp-journals-10024-2664.
  27. Albrektsson T, Zarb G, Worthington P, et al. The long-term efficacy of currently used dental implants: a review and proposed criteria of success. Int J Oral Maxillofac Implants 1986;1(1):11–25.
  28. Canullo L, Pellegrini G, Canciani E, et al. Alveolar socket preservation technique: effect of biomaterial on bone regenerative pattern. Ann Anat 2016;206:73–79. DOI: 10.1016/j.aanat.2015.05.007.
  29. Canullo L, Wiel Marin G, Tallarico M, et al. Histological and histomorphometrical evaluation of postextractive sites grafted with mg-enriched nano-hydroxyapatite: a randomized controlled trial comparing 4 versus 12 months of healing. Clin Implant Dent Relat Res 2016;18(5):973–983. DOI: 10.1111/cid.12381.
  30. Vignoletti F, Matesanz P, Rodrigo D, et al. Surgical protocols for ridge preservation after tooth extraction. A systematic review. Clin Oral Implants Res 2012;23(Suppl 5):22–38. DOI: 10.1111/j.1600-0501.2011.02331.x.
  31. Lee J, Lee JB, Koo KT, et al. Flap management in alveolar ridge preservation: a systematic review and meta-analysis. Int J Oral Maxillofac Implants 2018;33(3):613–621. DOI: 10.11607/jomi.6368.
  32. Al Yafi F, Alchawaf B, Nelson K. What is the optimum for alveolar ridge preservation? Dent Clin North Am 2019;63(3):399–418. DOI: 10.1016/j.cden.2019.02.007.
  33. Bassir SH, Alhareky M, Wangsrimongkol B, et al. Systematic review and meta-analysis of hard tissue outcomes of alveolar ridge preservation. Int J Oral Maxillofac Implants 2018;33(5):979–994. DOI: 10.11607/jomi.6399.
  34. Iocca O, Farcomeni A, Pardiñas Lopez S, et al. Alveolar ridge preservation after tooth extraction: a bayesian network meta-analysis of grafting materials efficacy on prevention of bone height and width reduction. J Clin Periodontol 2017;44(1):104–114. DOI: 10.1111/jcpe.12633.
  35. Atieh MA, Alsabeeha NH, Payne AG, et al. Interventions for replacing missing teeth: alveolar ridge preservation techniques for dental implant site development. Cochrane Database Syst Rev 2015;2015(5):CD010176. DOI: 10.1002/14651858.CD010176.pub2.
  36. Di Stefano DA, Gastaldi G, Vinci R, et al. Histomorphometric comparison of enzyme-deantigenic equine bone and anorganic bovine bone in sinus augmentation: a randomized clinical trial with 3-year follow-up. Int J Oral Maxillofac Implants 2015;30(5):1161–1167. DOI: 10.11607/jomi.4057.
  37. Di Stefano DA, Gastaldi G, Vinci R, et al. Bone formation following sinus augmentation with an equine-derived bone graft: a retrospective histologic and histomorphometric study with 36-month follow-up. Int J Oral Maxillofac Implants 2016;31(2):406–412. DOI: 10.11607/jomi.4373.
  38. Perrotti V, Nicholls BM, Piattelli A. Human osteoclast formation and activity on an equine spongy bone substitute. Clin Oral Implants Res 2009;20(1):17–23. DOI: 10.1111/j.1600-0501.2008.01608.x.
  39. Perrotti V, Nicholls BM, Horton MA, et al. Human osteoclast formation and activity on a xenogenous bone mineral. J Biomed Mater Res A 2009;90(1):238–246. DOI: 10.1002/jbm.a.32079.
  40. Liu G, Hu YY, Zhao JN, et al. Effect of type I collagen on the adhesion, proliferation, and osteoblastic gene expression of bone marrow-derived mesenchymal stem cells. Chin J Traumatol 2004;7(6):358–362.
  41. Mizuno M, Fujisawa R, Kuboki Y. Type I collagen-induced osteoblastic differentiation of bone-marrow cells mediated by collagen-alpha2beta1 integrin interaction. J Cell Physiol 2000;184(2):207–213. DOI: 10.1002/1097-4652(200008)184:2<207::AID-JCP8>3.0. CO;2-U.
  42. Regazzoni C, Winterhalter KH, Rohrer L. Type I collagen induces expression of bone morphogenetic protein receptor type II. Biochem Biophys Res Commun 2001;283(2):316–322. DOI: 10.1006/bbrc.2001.4813.
  43. Green J, Schotland S, Stauber DJ, et al. Cell-matrix interaction in bone: type I collagen modulates signal transduction in osteoblast-like cells. Am J Physiol 1995;268(5 Pt 1):C1090–C1103. DOI: 10.1152/ajpcell.1995.268.5.C1090.
  44. Di Stefano DA, Zaniol T, Cinci L, et al. Chemical, clinical and histomorphometric comparison between equine bone manufactured through enzymatic antigen-elimination and bovine bone made non-antigenic using a high-temperature process in post-extractive socket grafting. A comparative retrospective clinical study. Dent J (Basel) 2019;7(3):70. DOI: 10.3390/dj7030070.
  45. Grinnell F, Fukamizu H, Pawelek P, et al. Collagen processing, crosslinking, and fibril bundle assembly in matrix produced by fibroblasts in long-term cultures supplemented with ascorbic acid. Exp Cell Res 1989;181(2):483–491. DOI: 10.1016/0014-4827(89)90105-5.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.