The Journal of Contemporary Dental Practice

Register      Login

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue

Online First

Archive
Related articles

VOLUME 22 , ISSUE 11 ( November, 2021 ) > List of Articles

ORIGINAL RESEARCH

Qualitative and Quantitative Assessments of Alveolar Bone Dimension and Its Correlation with Tooth Angulation in the Anterior Maxilla for Immediate Implant Placement

Jumanah Babiker, Nur Hafizah Kamar Affendi, Mohd Yusmiaidil Putera Mohd Yusof, Stephen J Chu

Keywords : Alveolar bone, Cone-beam computed tomography, Facial bone, Immediate implant placement, Palatal bone thickness

Citation Information : Babiker J, Affendi NH, Yusof MY, Chu SJ. Qualitative and Quantitative Assessments of Alveolar Bone Dimension and Its Correlation with Tooth Angulation in the Anterior Maxilla for Immediate Implant Placement. J Contemp Dent Pract 2021; 22 (11):1237-1242.

DOI: 10.5005/jp-journals-10024-3211

License: CC BY-NC 4.0

Published Online: 24-02-2022

Copyright Statement:  Copyright © 2021; The Author(s).


Abstract

Aim and objective: The aim of this paper is to ascertain the quantitative measurements of alveolar bone thickness at all maxillary anterior teeth and qualitatively demonstrate the relationship between tooth angulation (TA) and alveolar bone thickness. Materials and methods: Cone-beam computed tomography (CBCT) images of 189 maxillary anterior teeth were collected. Sagittal view was selected to perform the measurement on alveolar bone wall at crestal, midlevel, and palatal. TA was measured along to the tooth long axis (TLA) related to the alveolar bone housing. Spearman's correlation coefficients were conducted to test the correlation between the variables. Results: The facial alveolar bone (FAB) is predominantly thin (<1 mm) at the crestal and midroot region. A significant difference was recorded in the median thickness of FAB at the midroot and apical area (p = 0.001, p = 0.021). The FAB thickness was not gradual with midroot being thinner than crestal. For the palatal alveolar bone (PAB), the thickness was increased continuously toward the apex. At all apical levels of inspected teeth, a significant negative correlation existed between TA and FAB. A positive correlation of TA was only significant at the facial crest of lateral incisor (r = 0.308). However, the canines did not correlate with the FAB, but correlated with the PAB at the apical level (r = 0.478). Conclusion: The FAB wall crest of maxillary anterior teeth was generally thin and not gradual with the lateral incisor being the thinnest. A significant correlation of TA existed based on different types of maxillary anterior teeth and alveolar bone level. The maxillary anterior teeth with increased buccolingual angulation were correlated with thicker bone at the apical level. Clinical significance: The quantitative assessment of FAB and TA in degree may serve as an anatomical index for ideal implant position.


HTML PDF Share
  1. Cabello G, Rioboo M, Fábrega JG. Immediate placement and restoration of implants in the aesthetic zone with a trimodal approach: Soft tissue alterations and its relation to gingival biotype. Clin Oral Implants Res 2013;24(10):1094–1100. DOI: 10.1111/j.1600-0501. 2012.02516.x.
  2. Buser D, Martin W, Belser UC. Optimizing esthetics for implant restorations in the anterior maxilla: anatomic and surgical considerations. Int J Oral Maxillofac Implants 2004;19(Suppl):43–61. PMID: 15635945.
  3. Buser D, Chen ST, Weber HP, et al. Early implant placement following single-tooth extraction in the esthetic zone: biologic rationale and surgical procedures. Int J Periodontics Restor Dent 2008;28(5): 441–451. PMID: 18990995.
  4. Kim JH, Lee JG, Han DH, et al. Morphometric analysis of the anterior region of the maxillary bone for immediate implant placement using micro-CT. Clin Anat 2011;24(4):462–468. DOI: 10.1002/ca.21101.
  5. Grunder U, Gracis S, Capelli M. Influence of the 3-D bone-to-implant relationship on esthetics. Int J Periodontics Restorative Dent 2005;25(2):113–119. PMID: 15839587.
  6. Tsigarida A, Toscano J, de Brito Bezerra B, et al. Buccal bone thickness of maxillary anterior teeth: A systematic review and meta-analysis. J Clin Periodontol 2020;47(11):1326–1343. DOI: 10.1111/jcpe.13347.
  7. Daftary F, Mahallati R, Bahat O, et al. Lifelong craniofacial growth and the implications for osseointegrated implants. Int J Oral Maxillofac Implants 2013;28(1):163. DOI: 10.11607/jomi.2827.
  8. Gluckman H, Salama M, Du Toit J. A retrospective evaluation of 128 socket-shield cases in the esthetic zone and posterior sites: partial extraction therapy with up to 4 years follow-up. Clin Implant Dent Relat Res 2018;20(2):122–129. DOI: 10.1111/cid.12554.
  9. Hürzeler MB, Zuhr O, Schupbach P, et al. The socket-shield technique: a proof-of-principle report. J Clin Periodontol 2010;37(9):855–862. DOI: 10.1111/j.1600-051X.2010.01595.x.
  10. Kan JY, Rungcharassaeng K. Proximal socket shield for interimplant papilla preservation in the esthetic zone. Int J Periodontics Restor Dent 2013;33(1):e24. DOI: 10.11607/prd.1346.
  11. Tarnow DP, Chu SJ, Salama MA, et al. Flapless postextraction socket implant placement in the esthetic zone: part 1. The effect of bone grafting and/or provisional restoration on facial-palatal ridge dimensional change-a retrospective cohort study. Int J Periodontics Restor Dent 2014;34(3):323. DOI: 10.11607/prd.1821.
  12. Gluckman H, Pontes CC, Du Toit J. Radial plane tooth position and bone wall dimensions in the anterior maxilla: a CBCT classification for immediate implant placement. J Prosthet Dent 2018;120(1):50–56. DOI: 10.1016/j.prosdent.2017.09.005.
  13. Kan JYK, Roe P, Rungcharassaeng K, et al. Classification of sagittal root position in relation to the anterior maxillary osseous housing for immediate implant placement: a cone beam computed tomography study. Int J Oral Maxillofac Implants 2011;26(4):873. PMID: 21841998.
  14. Do TA, Shen YW, Fuh LJ, et al. Clinical assessment of the palatal alveolar bone thickness and its correlation with the buccolingual angulation of maxillary incisors for immediate implant placement. Clin Implant Dent Relat Res 2019;21(5):1080–1086. DOI: 10.1111/cid.12835.
  15. Han JY, Jung GU. Labial and lingual/palatal bone thickness of maxillary and mandibular anteriors in human cadavers in Koreans. J Periodontal Implant Sci 2011;41(2):60–66. DOI: 10.5051/jpis.2011.41.2.60.
  16. Porto OCL, Silva BSF, Silva JA, et al. CBCT assessment of bone thickness in maxillary and mandibular teeth: an anatomic study. J Appl Oral Sci 2020;28:e20190148. DOI: 10.1590/1678-7757-2019-0148.
  17. Nahás-Scocate ACR, de Siqueira Brandão A, Patel MP, et al. Bone tissue amount related to upper incisors inclination. Angle Orthod 2014;84(2):279–285. DOI: 10.2319/031213-211.1.
  18. Sendyk M, de Paiva JB, Abrão J, et al. Correlation between buccolingual tooth inclination and alveolar bone thickness in subjects with Class III dentofacial deformities. Am J Orthod Dentofacial Orthop 2017;152(1):66–79. DOI: 10.1016/j.ajodo.2016.12.014.
  19. Khoury J, Ghosn N, Mokbel N, et al. Buccal bone thickness overlying maxillary anterior teeth: a clinical and radiographic prospective human study. Implant Dent 2016;25(4):525–531. DOI: 10.1097/ID.0000000000000427.
  20. Vandenbroucke JP, Von Elm E, Altman DG, et al. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): explanation and elaboration. PLoS Med 2007;4(10):e297. DOI: 10.1371/journal.pmed.0040297.
  21. Dos Santos JG, Oliveira Reis Durao AP, de Campos Felino AC, et al. Analysis of the buccal bone plate, root inclination and alveolar bone dimensions in the jawbone. A descriptive study using cone-beam computed tomography. J Oral Maxillofac Res 2019;10(2):e4. DOI: 10.5037/jomr.2019.10204.
  22. Braut V, Bornstein MM, Belser U, et al. Thickness of the anterior maxillary facial bone wall-a retrospective radiographic study using cone beam computed tomography. Int J Periodontics Restorative Dent 2011;31(2):125–131. PMID: 21491011.
  23. Buser D, von Arx T. Surgical procedures in partially edentulous patients with ITI implants. Clin Oral Implants Res 2000;11(Suppl 1.):83–100. DOI: 10.1034/j.1600-0501.2000.011s1083.x.
  24. Januario AL, Duarte WR, Barriviera M, et al. Dimension of the facial bone wall in the anterior maxilla: a cone-beam computed tomography study. Clin Oral Implants Res 2011;22(10):1168–1171. DOI: 10.1111/j.1600-0501.2010.02086.x.
  25. Nowzari H, Molayem S, Chiu CH, et al. Cone beam computed tomographic measurement of maxillary central incisors to determine prevalence of facial alveolar bone width >/=2 mm. Clin Implant Dent Relat Res 2012;14(4):595–602. DOI: 10.1111/j.1708-8208.2010.00287.x.
  26. Ghassemian M, Nowzari H, Lajolo C, et al. The thickness of facial alveolar bone overlying healthy maxillary anterior teeth. J Periodontol 2012;83(2):187–197. DOI: 10.1902/jop.2011.110172.
  27. Lin CY, Pan WL, Wang HL. Facial fenestration and dehiscence defects associated with immediate implant placement without flap elevation in anterior maxillary ridge: a preliminary cone beam computed tomography study. Int J Oral Maxillofac Implants 2018;33(5):1112–1118. DOI: 10.11607/jomi.6575.
  28. Zhou Z, Chen W, Shen M, et al. Cone beam computed tomographic analyses of alveolar bone anatomy at the maxillary anterior region in Chinese adults. J Biomed Res 2014;28(6):498. DOI: 10.7555/JBR.27.20130002.
  29. Noelken R, Geier J, Kunkel M, et al. Influence of soft tissue grafting, orofacial implant position, and angulation on facial hard and soft tissue thickness at immediately inserted and provisionalized implants in the anterior maxilla. Clin Implant Dent Relat Res 2018;20(5): 674–682. DOI: 10.1111/cid.12643.
  30. Lee S-L, Kim H-J, Son M-K, et al. Anthropometric analysis of maxillary anterior buccal bone of Korean adults using cone-beam CT. J Adv Prosthodont 2010;2(3):92–96. DOI: 10.4047/jap.2010.2.3.92.
  31. AlTarawneh S, AlHadidi A, Hamdan AA, et al. Assessment of bone dimensions in the anterior maxilla: a cone beam computed tomography study. J Prosthodont 2018;27(4):321–328. DOI: 10.1111/jopr. 12675.
  32. Lau SL, Chow J, Li W, et al. Classification of maxillary central incisors-implications for immediate implant in the esthetic zone. J Oral Maxillofac Surg 2011;69(1):142–153. DOI: 10.1016/j.joms.2010.07.074.
  33. Huynh-Ba G, Pjetursson BE, Sanz M, et al. Analysis of the socket bone wall dimensions in the upper maxilla in relation to immediate implant placement. Clin Oral Implants Res 2010;21(1):37–42. DOI: 10.1111/j.1600-0501.2009.01870.x.
  34. Wittneben JG, Joda T, Weber HP, et al. Screw retained vs cement retained implant-supported fixed dental prosthesis. Periodontology 2000 2017;73(1):141–151. DOI: 10.1111/prd.12168.
  35. Wang HM, Shen JW, Yu MF, et al. Analysis of facial bone wall dimensions and sagittal root position in the maxillary esthetic zone: a retrospective study using cone beam computed tomography. Int J Oral Maxillofac Implants 2014;29(5):1123–1129. DOI: 10.11607/jomi.3348.
  36. Poletto-Neto V, Tretto PHW, Zen BM, et al. Influence of implant inclination and prosthetic abutment type on the biomechanics of implant-supported fixed partial dentures. J Oral Implantol 2019;45(5):343–350. DOI: 10.1563/aaid-joi-D-18-00305.
  37. Juodzbalys G, Sakavicius D, Wang HL. Classification of extraction sockets based upon soft and hard tissue components. J Periodontol 2008;79(3):413–424. DOI: 10.1902/jop.2008.070397.
  38. Lopez-Jarana P, Diaz-Castro CM, Falcao A, et al. Thickness of the buccal bone wall and root angulation in the maxilla and mandible: an approach to cone beam computed tomography. BMC Oral Health 2018;18(1):194. DOI: 10.1186/s12903-018-0652-x.
  39. Sanz M, Cecchinato D, Ferrus J, et al. A prospective, randomized-controlled clinical trial to evaluate bone preservation using implants with different geometry placed into extraction sockets in the maxilla. Clin Oral Implants Res 2010;21(1):13–21. DOI: 10.1111/j.1600-0501.2009.01824.x.
  40. Lascala CA, Panella J, Marques MM. Analysis of the accuracy of linear measurements obtained by cone beam computed tomography (CBCT-NewTom). Dentomaxillo Facial Radiol 2004;33(5):291–294. DOI: 10.1259/dmfr/25500850.
  41. Moreira CR, Sales MA, Lopes PM, et al. Assessment of linear and angular measurements on three-dimensional cone-beam computed tomographic images. Oral Surg Oral Med Oral Pathol Oral Radiol Endodont 2009;108(3):430–436. DOI: 10.1016/j.tripleo.2009.01.032.
  42. Yusof NAM, Noor E, Yusof MYPM. The accuracy of linear measurements in cone beam computed tomography for assessing intrabony and furcation defects: a systematic review and meta-analysis. J Oral Res 2020;8(6):527–539. DOI: 10.17126/joralres.2019.077.
  43. Yusof NAM, Noor E, Reduwan NH, et al. Diagnostic accuracy of periapical radiograph, cone beam computed tomography, and intrasurgical linear measurement techniques for assessing furcation defects: a longitudinal randomised controlled trial. Clin Oral Investig 2021;25(3):923–932. DOI: 10.1007/s00784-020-03380-8.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.