The Journal of Contemporary Dental Practice

Register      Login

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue

Online First

Archive
Related articles

VOLUME 22 , ISSUE 11 ( November, 2021 ) > List of Articles

REVIEW ARTICLE

Application of Near-infrared Light Transillumination in Restorative Dentistry: A Review

Thilla S Vinothkumar

Keywords : Dental caries, Early diagnosis, Ionizing radiation, Minimally invasive, Near-infrared, Occlusal caries, Transillumination

Citation Information : Vinothkumar TS. Application of Near-infrared Light Transillumination in Restorative Dentistry: A Review. J Contemp Dent Pract 2021; 22 (11):1355-1361.

DOI: 10.5005/jp-journals-10024-3204

License: CC BY-NC 4.0

Published Online: 24-02-2022

Copyright Statement:  Copyright © 2021; The Author(s).


Abstract

This paper presents the various applications of near-infrared light transillumination (NILT) in dentistry. Untreated dental caries is considered the most prevalent health condition affecting both children and adults worldwide. Increased awareness and a paradigm shift toward utilization of minimally invasive treatment procedures and nonionizing radiation led to the discovery of newer techniques for screening and early diagnosis of demineralized lesions. Demineralized lesions detected early can be treated with minimally invasive treatment procedures such as the usage of fluoridated dentifrice to encourage remineralization and resin infiltration to arrest caries progression. NILT procedure involves noninvasive, nonionizing radiation and helps in the identification of early demineralized lesions using light transillumination. At near-infrared wavelengths, the enamel appears translucent and helps in visualizing and detecting demineralized lesions when long-wave light transilluminated against the tooth surface. The wavelength in the range of 1310 nm is considered best for the transillumination of lesions. This technique has been proven to be successful in the detection of carious and demineralized lesions. NILT can be used as a screening tool for the early detection of demineralized lesions and can be considered as an adjunct to bitewing radiographs. It can be advantageous in screening pregnant, growing adolescent patients and in cases where multiple follow-ups are needed and ionizing radiation must be avoided.


HTML PDF Share
  1. Fontana M, Young DA, Wolff MS, et al. Defining dental caries for 2010 and beyond. Dent Clin North Am 2010;54(3):423–440. DOI: 10.1016/j.cden.2010.03.007.
  2. Featherstone JDB. Dental caries: a dynamic disease process. Aust Dent J 2008;53(3):286–291. DOI: 10.1111/j.1834-7819.2008.00064.x.
  3. Shitie A, Addis R, Tilahun A, et al. Prevalence of dental caries and its associated factors among primary school children in Ethiopia. Int J Dent 2021;2021. DOI: 10.1155/2021/6637196.
  4. Pitts NB, Zero DT, Marsh PD, et al. Dental caries. Nat Rev Dis Primers 2017;3. DOI: 10.1038/nrdp.2017.30.
  5. World Health Organization. Sugars and dental caries. World Health Organization. 2017.
  6. Baelum V, Heidmann J, Nyvad B. Dental caries paradigms in diagnosis and diagnostic research. Eur J Oral Sci. 2006;114(4):263–277. DOI: 10.1111/j.1600-0722.2006.00383.x.
  7. Gomez J. Detection and diagnosis of the early caries lesion. BMC Oral Health 2015;15(1): S3. DOI: 10.1186/1472-6831-15-S1-S3.
  8. Cury JA, Tenuta LMA. Enamel remineralization: controlling the caries disease or treating early caries lesions? Braz Oral Res 2009;23 (Suppl 1):23–30. DOI: 10.1590/s1806-83242009000500005.
  9. Reynolds EC. Calcium phosphate-based remineralization systems: scientific evidence? Aust Dent J 2008;53(3):268–273. DOI: 10.1111/j.1834-7819.2008.00061.x.
  10. Fontana M. Enhancing fluoride: clinical human studies of alternatives or boosters for caries management. Caries Res 2016;50(suppl 1):22–37. DOI: 10.1159/000439059.
  11. Amaechi BT, Van Loveren C. Fluorides and non-fluoride remineralization systems. Toothpastes 2013;23:15–26. DOI: 10.1159/000350458.
  12. Shen P, Bagheri R, Walker GD, et al. Effect of calcium phosphate addition to fluoride containing dental varnishes on enamel demineralization. Aust Dent J 2016;61(3):357–365. DOI: 10.1111/adj.12385.
  13. Paris S, Meyer-Lueckel H. Infiltrants inhibit progression of natural caries lesions in vitro. J Dent Res 2010;89(11):1276–1280. DOI: 10.1177/0022034510376040.
  14. Griffin SO, Oong E, Kohn W, et al. The effectiveness of sealants in managing caries lesions. J Dent Res 2008;87(2):169–174. DOI: 10.1177/154405910808700211.
  15. González-Cabezas C, Fernández CE. Recent advances in remineralization therapies for caries lesions. Adv Dent Res 2018;29(1):55–59. DOI: 10.1177/0022034517740124.
  16. Amaechi BT. Remineralization therapies for initial caries lesions. Curr Oral Heal Reports 2015;2(2):95–101. DOI: 10.1007/s40496-015-0048-9.
  17. Kidd EAM, Fejerskov O. What constitutes dental caries? Histopathology of carious enamel and dentin related to the action of cariogenic biofilms. J Dent Res 2004;83(1_suppl):35–38. DOI: 10.1177/154405910408301s07.
  18. Gimenez T, Piovesan C, Braga MM, et al. Visual inspection for caries detection: a systematic review and meta-analysis. J Dent Res 2015;94(7):895–904. DOI: 10.1177/0022034515586763.
  19. Ismail AI, Sohn W, Tellez M, et al. The International Caries Detection and Assessment System (ICDAS): an integrated system for measuring dental caries. Community Dent Oral Epidemiol 2007;35(3):170–178. DOI: 10.1111/j.1600-0528.2007.00347.x.
  20. Wenzel A. Radiographic display of carious lesions and cavitation in approximal surfaces: advantages and drawbacks of conventional and advanced modalities. Acta Odontol Scand 2014;72(4):251–264. DOI: 10.3109/00016357.2014.888757.
  21. Hopcraft MS, Morgan MV. Comparison of radiographic and clinical diagnosis of approximal and occlusal dental caries in a young adult population. Community Dent Oral Epidemiol 2005;33(3):212–218. DOI: 10.1111/j.1600-0528.2005.00216.x.
  22. Wenzel A, Larsen MJ, Feierskov O. Detection of occlusal caries without cavitation by visual inspection, film radiographs, xeroradiographs, and digitized radiographs. Caries Res 1991;25(5):365–371. DOI: 10.1159/000261393.
  23. Ketley CE, Holt RD. Visual and radiographic diagnosis of occlusal caries in first permanent molars and in second primary molars. Br Dent J 1993;174(10):364–370. DOI: 10.1038/sj.bdj.4808172.
  24. White SC, Pharoah MJ. Oral radiology-E-Book: principles and interpretation. Elsevier Health Sciences. 2014.
  25. Dorothy McComb BDS, Tam LE. Diagnosis of occlusal caries: part I. Conventional methods. J Can Dent Assoc 2001;67(8):454–457. PMID: 11583606.
  26. Richardson PS, McIntyre IG. The difference between clinical and bitewing detection of approximal and occlusal caries in Royal Air Force recruits. Community Dent Health 1996;13(2):65–69. PMID: 8763134.
  27. Huysmans M-CD, Longbottom CH, Pitts NB. Electrical methods in occlusal caries diagnosis: an in vitro comparison with visual inspection and bite–wing radiography. Caries Res 1998;32(5):324–329. DOI: 10.1159/000016467.
  28. Macey R, Walsh T, Riley P, et al. Tests to detect and inform the diagnosis of caries. Cochrane Database Syst Rev 2018;12:CD013806. DOI: 10.1002/14651858.CD013806.
  29. Yanıkoğlu FÇ, Öztürk F, Hayran O, et al. Detection of natural white spot caries lesions by an ultrasonic system. Caries Res 2000;34(3):225–232. DOI: 10.1159/000016595.
  30. Yılmaz H, Keleş S. Recent methods for diagnosis of dental caries in dentistry. Meandros Med Dent J 2018;19(1):1. DOI: 10.4274/meandros.21931.
  31. Mohanraj M, Prabhu VR, Senthil R. Diagnostic methods for early detection of dental caries-a review. Int J Pedod Rehabil 2016;1(1): 29–36.
  32. Tam LE, McComb D. Diagnosis of occlusal caries: Part II. Recent diagnostic technologies. J Can Dent Assoc (Tor) 2001;67(8):459–464. PMID: 11583607.
  33. Zandoná AF, Zero DT. Diagnostic tools for early caries detection. J Am Dent Assoc 2006;137(12):1675–1684. DOI: 10.14219/jada.archive.2006.0113.
  34. Stookey GK, Jackson RD, Zandona AG, et al. Dental caries diagnosis. Dent Clin North Am 1999;43(4):665–677. PMID: 10553249.
  35. Koenig K, Schneckenburger H, Hemmer J, et al. In-vivo fluorescence detection and imaging of porphyrin-producing bacteria in the human skin and in the oral cavity for diagnosis of acne vulgaris, caries, and squamous cell carcinoma. In: Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases. Vol. 2135. International Society for Optics and Photonics. 1994:129–138.
  36. Lussi A, Hibst R, Paulus R. DIAGNOdent: an optical method for caries detection. J Dent Res 2004;83(1_suppl):80–83. DOI: 10.1177/154405910408301s16.
  37. Shi X-Q, Welander U, Angmar-Månsson B. Occlusal caries detection with KaVo DIAGNOdent and radiography: an in vitro comparison. Caries Res 2000;34(2):151–158. DOI: 10.1159/000016583.
  38. Hibst R, Paulus R. New approach on fluorescence spectroscopy for caries detection. In: Lasers in Dentistry V. Vol 3593. International Society for Optics and Photonics. 1999;141–147.
  39. Lussi A, Imwinkelried S, Pitts NB, et al. Performance and reproducibility of a laser fluorescence system for detection of occlusal caries in vitro. Caries Res 1999;33(4):261–266. DOI: 10.1159/000016527.
  40. Strassler HE, Pitel ML. Using fiber-optic transillumination as a diagnostic aid in dental practice. Compendium 2014;35(2):80–88. PMID: 24571557.
  41. Schneiderman A, Elbaum M, Shultz T, et al. Assessment of dental caries with digital imaging fiber-optic translllumination (DIFOTITM): in vitro study. Caries Res 1997;31(2):103–110. DOI: 10.1159/000262384.
  42. Fried D, Featherstone JDB, Darling CL, et al. Early caries imaging and monitoring with near-infrared light. Dent Clin North Am 2005;49(4):771–793. DOI: 10.1016/j.cden.2005.05.008.
  43. Fried D, Glena RE, Featherstone JDB, et al. Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths. Appl Opt 1995;34(7):1278–1285. DOI: 10.1364/AO.34.001278.
  44. Jones R, Huynh G, Jones G, Fried D. Near-infrared transillumination at 1310-nm for the imaging of early dental decay. Opt Express 2003;11(18):2259–2265. DOI: 10.1364/oe.11.002259.
  45. De Zutter M, Vandenbulcke JD, Van Acker JWG, et al. In vivo correlation of near-infrared transillumination and visual inspection with bitewing radiography for the detection of interproximal caries in permanent and primary teeth. Eur Arch Paediatr Dent 2020;21(4):509–518. DOI: 10.1007/s40368-020-00538-6.
  46. Abdelaziz M, Ivo Krejci. DIAGNOcam-a Near Infrared Digital Imaging Transillumination (NIDIT) Technology. Int J Esthetic Dentistry 2015;10(1):158–165. PMID: 25625132.
  47. Staninec M, Douglas SM, Darling CL, et al. Non-destructive clinical assessment of occlusal caries lesions using near-IR imaging methods. Lasers Surg Med 2011;43(10):951–959. DOI: 10.1002/lsm.21139.
  48. Ferreira A, Longbottom ZC. Detection and assessment of dental caries: a clinical guide-Andrea Ferreira Zandona, Christopher Longbottom. 2019. p. 249. ISBN: 978-3-030-16967-1.
  49. Abdelaziz M, Krejci I, Perneger T, et al. Near infrared transillumination compared with radiography to detect and monitor proximal caries: a clinical retrospective study. J Dent 2018;70:40–45. DOI: 10.1016/j.jdent.2017.12.008.
  50. Yang J, Dutra V. Utility of radiology, laser fluorescence, and transillumination. Dent Clin North Am 2005;49(4):739–752. DOI: 10.1016/j.cden.2005.05.010.
  51. Simon JC, Kang H, Staninec M, et al. Near-IR and CP-OCT imaging of suspected occlusal caries lesions. Lasers Surg Med 2017;49(3):215–224. DOI: 10.1002/lsm.22641.
  52. Kühnisch J, Söchtig F, Pitchika V, et al. In vivo validation of near-infrared light transillumination for interproximal dentin caries detection. Clin Oral Investig 2016;20(4):821–829. DOI: 10.1007/s00784-015-1559-4.
  53. Brouwer F, Askar H, Paris S, et al. Detecting secondary caries lesions. J Dent Res 2016;95(2):143–151. DOI: 10.1177/0022034515611041.
  54. Signori C, Gimenez T, Mendes FM, et al. Clinical relevance of studies on the visual and radiographic methods for detecting secondary caries lesions – a systematic review. J Dent 2018;75:22–33. DOI: 10.1016/j.jdent.2018.05.018.
  55. Ando M, González-Cabezas C, Isaacs RL, et al. Evaluation of several techniques for the detection of secondary caries adjacent to amalgam restorations. Caries Res 2004;38(4):350–356. DOI: 10.1159/000078181.
  56. Gordan VV, Riley JL, Carvalho RM, et al. Methods used by dental practice-based research network (DPBRN) dentists to diagnose dental caries. Oper Dent 2011;36(1):2–11. DOI: 10.2341/10-137-CR.
  57. Angelino K, Edlund DA, Shah P. Near-infrared imaging for detecting caries and structural deformities in teeth. IEEE J Transl Eng Health Med 2017;19(5):2300107. DOI: 10.1109/JTEHM.2017.2695194.
  58. Elhennawy K, Askar H, Jost-Brinkmann PG, et al. In vitro performance of the DIAGNOcam for detecting proximal carious lesions adjacent to composite restorations. J Dent 2018;72:39–43. DOI: 10.1016/j.jdent.2018.03.002.
  59. Askar H, Krois J, Göstemeyer G, et al. Secondary caries: what is it, and how it can be controlled, detected, and managed? Clin Oral Investig 2020;24(5):1869–1876. DOI: 10.1007/s00784-020-03268-7.
  60. Simon JC, Lucas S, Lee R, et al. In-vitro near-infrared imaging of natural secondary caries. In: Lasers in dentistry XXI. Proc SPIE Int Soc Opt Eng 2015;9306:93060F. DOI: 10.1117/12.2083649.
  61. Simon JC, A. Lucas S, Lee RC, et al. Near-infrared imaging of secondary caries lesions around composite restorations at wavelengths from 1300-1700-nm. Dent Mater 2016;32(4):587–595. DOI: 10.1016/j.dental.2016.01.008.
  62. David CM, Gupta P. Lasers in Dentistry: a Review. Int J Adv Health Sci 2015;2(8):7–13.
  63. Eberhard J, Eisenbeiss AK, Braun A, et al. Evaluation of selective caries removal by a fluorescence feedback-controlled Er:YAG laser in vitro. Caries Res 2005;39(6):496–504. DOI: 10.1159/000088186.
  64. Darling CL, Fried D. Real-time near-IR imaging of laser-ablation crater evolution in dental enamel. In: Lasers in Dentistry XIII. SPIE BiOS 2007;6425:64250I. DOI: 10.1117/12.714787.
  65. Tao Y-C, Fried D. Near-infrared image-guided laser ablation of dental decay. J Biomed Opt 2009;14(5):054045. DOI: 10.1117/1.3253390.
  66. Turgut MD, Attar N, Onen A. Radiopacity of direct esthetic restorative materials. Oper Dent 2003;28(5):508–514. PMID: 14531595.
  67. Logan CM, Co KU, Fried WA, et al. Multispectral near-infrared imaging of composite restorations in extracted teeth. In: Lasers in Dentistry XX. SPIE. 2014;8929:89290R. DOI: 10.1117/12.2045687.
  68. Fried WA, Simon JC, Darling CL, et al. High-contrast reflectance imaging of composite restorations color-matched to tooth structure at 1000-2300-nm. In: Lasers in Dentistry XXIII. SPIE. 2017;10044:100440J. DOI: 10.1117/12.2256733.
  69. Maia AMA, Karlsson L, Margulis W, et al. Evaluation of two imaging techniques: near-infrared transillumination and dental radiographs for the detection of early approximal enamel caries. Dentomaxillofacial Radiol 2011;40(7):429–433. DOI: 10.1259/dmfr/32702114.
  70. Staninec M, Lee C, Darling CL, et al. In vivo near-IR imaging of approximal dental decay at 1,310nm. Lasers Surg Med 2010;42(4):292–298. DOI: 10.1002/lsm.20913.
  71. Amaechi BT, Owosho AA, Fried D. Fluorescence and near-infrared light transillumination. Dent Clin North Am 2018;62(3):435–452. DOI: 10.1016/j.cden.2018.03.010.
  72. Jones RS, Huynh GD, Jones GC, et al. Near-infrared transillumination at 1310-Nm for the imaging of early dental decay. Opt Express 2003;11(18):2259–2265. DOI: 10.1364/oe.11.002259.
  73. Heck K, Litzenburger F, Geitl T, et al. Near-infrared reflection at 780 nm for detection of early proximal caries in posterior permanent teeth in vitro. Dentomaxillofacial Radiol 2021;50(6):20210005. DOI: 10.1259/dmfr.20210005.
  74. Wu J, Fried D. High contrast near-infrared polarized reflectance images of demineralization on tooth buccal and occlusal surfaces at λ=1310-nm. Lasers Surg Med 2009;41(3):208–213. DOI: 10.1002/lsm.20746.
  75. Bühler CM, Ngaotheppitak P, Fried D. Imaging of occlusal dental caries (decay) with near-IR light at 1310-nm. Opt Express 2005;13(2):573–582. DOI: 10.1364/OPEX.13.000573.
  76. Fried WA, Fried D, Chan KH, et al. High contrast reflectance imaging of simulated lesions on tooth occlusal surfaces at near-IR wavelengths. Lasers Surg Med 2013;45(8):533–541. DOI: 10.1002/lsm.22159.
  77. Söchtig F, Hickel R, Kühnisch J. Caries detection and diagnostics with near-infrared light transillumination: clinical experiences. Quintessence Int 2014;45(6):531–538. DOI: 10.3290/j.qi.a31533.
  78. Richter AE, Arruda AO, Peters MC, et al. Incidence of caries lesions among patients treated with comprehensive orthodontics. Am J Orthod Dentofac Orthop 2011;139(5):657–664. DOI: 10.1016/j.ajodo.2009.06.037.
  79. Heymann GC, Grauer D. A contemporary review of white spot lesions in orthodontics. J Esthet Restor Dent 2013;25(2):85–95. DOI: 10.1111/jerd.12013.
  80. Sadikoglu IS. White spot lesions: recent detection and treatment methods. Cyprus J Med Sci 2020;5(3):260–266. DOI: 10.5152/cjms.2020.1902.
  81. Knösel M, Eckstein A, Helms HJ. Durability of esthetic improvement following icon resin infiltration of multibracket-induced white spot lesions compared with no therapy over 6 months: a single-center, split-mouth, randomized clinical trial. Am J Orthod Dentofac Orthop 2013;144(1):86–96. DOI: 10.1016/j.ajodo.2013.02.029.
  82. Kahler W. The cracked tooth conundrum: terminology, classification, diagnosis, and management. Am J Dent 2008;21(5):275–282. PMID: 19024251.
  83. Ehrmann EH, Tyas MJ. Cracked tooth syndrome: diagnosis, treatment and correlation between symptoms and post-extraction findings. Aust Dent J 1990;35(2):105–112. DOI: 10.1111/j.1834-7819.1990.tb05872.x.
  84. Fried WA, Simon JC, Lucas S, et al. Near-IR imaging of cracks in teeth. In: Lasers in Dentistry XX. SPIE. 2014;8929:89290Q. DOI: 10.1117/12.2045686.
  85. Lederer A, Kunzelmann KH, Hickel R, et al. Transillumination and HDR imaging for proximal caries detection. J Dent Res 2018;97(7):844–849. DOI: 10.1177/0022034518759957.
  86. Litzenburger F, Lederer A, Kollmuß M, et al. Near-infrared transillumination with high dynamic range imaging for occlusal caries detection in vitro. Lasers Med Sci 2020;35(9):2049–2058. DOI: 10.1007/s10103-020-03078-z.
  87. Schwendicke F, Golla T, Dreher M, et al. Convolutional neural networks for dental image diagnostics: a scoping review. J Dent 2019;91:103226. DOI: 10.1016/j.jdent.2019.103226.
  88. Prados-Privado M, Villalón JG, Martínez-Martínez CH, et al. Dental images recognition technology and applications: a literature review. Appl Sci 2020;10(8):2856. DOI: 10.3390/APP10082856.
  89. Casalegno F, Newton T, Daher R, et al. Caries detection with near-infrared transillumination using deep learning. J Dent Res 2019;98(11):1227–1233. DOI: 10.1177/0022034519871884.
  90. Holtkamp A, Elhennawy K, Cejudo Grano de Oro JE, et al. Generalizability of deep learning models for caries detection in near-infrared light transillumination images. J Clin Med 2021;10(5):1–8. DOI: 10.3390/jcm10050961.
  91. Shimada Y, Burrow MF, Araki K, et al. 3D imaging of proximal caries in posterior teeth using optical coherence tomography. Sci Rep 2020;10(1):15754. DOI: 10.1038/s41598-020-72838-2.
  92. Michou S, Vannahme C, Bakhshandeh A, et al. Intraoral scanner featuring transillumination for proximal caries detection. An in vitro validation study on permanent posterior teeth. J Dent 2021:103841. DOI: 10.1016/j.jdent.2021.103841.
  93. Baltacioglu IH, Orhan K. Comparison of diagnostic methods for early interproximal caries detection with near-infrared light transillumination: an in vivo study. BMC Oral Health 2017;17(1):130. DOI: 10.1186/s12903-017-0421-2.
  94. Melo M, Pascual A, Camps I, et al. Combined near-infrarred light transillumination and direct digital radiography increases diagnostic in approximal caries. Sci Rep 2019;9(1):14224. DOI: 10.1038/s41598-019-50850-5.
  95. Schaefer G, Pitchika V, Litzenburger F, et al. Evaluation of occlusal caries detection and assessment by visual inspection, digital bitewing radiography and near-infrared light transillumination. Clin Oral Investig 2018;22(7):2431–2438. DOI: 10.1007/s00784-018-2512-0.
  96. Lederer A, Kunzelmann KH, Heck K, et al. In vitro validation of near-infrared transillumination at 780 nm for the detection of caries on proximal surfaces. Clin Oral Investig 2019;23(11):3933–3940. DOI: 10.1007/s00784-019-02824-0.
  97. Berg SC, Stahl JM, Lien W, et al. A clinical study comparing digital radiography and near-infrared transillumination in caries detection. J Esthet Restor Dent 2018;30(1):39–44. DOI: 10.1111/jerd.12346.
  98. Kocak N, Cengiz-Yanardag E. Clinical performance of clinical-visual examination, digital bitewing radiography, laser fluorescence, and near-infrared light transillumination for detection of non-cavitated proximal enamel and dentin caries. Lasers Med Sci 2020;35(7): 1621–1628. DOI: 10.1007/s10103-020-03021-2.
  99. Sürme K, Kara NB, Yilmaz Y. In vitro evaluation of occlusal caries detection methods in primary and permanent teeth: a comparison of CarieScan PRO, DIAGNOdent Pen, and DIAGNOcam methods. Photobiomodul Photomed Laser Surg 2020;38(2):105–111. DOI: 10.1089/photob.2019.4686.
  100. Stratigaki E, Jost FN, Kühnisch J, et al. Clinical validation of near-infrared light transillumination for early proximal caries detection using a composite reference standard. J Dent 2020;103S:100025. DOI: 10.1016/j.jjodo.2020.100025.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.