The Journal of Contemporary Dental Practice

Register      Login

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue

Online First

Archive
Related articles

VOLUME 22 , ISSUE 12 ( December, 2021 ) > List of Articles

ORIGINAL RESEARCH

Differential Responses of Human Dental Pulp Stromal Cells to Bioceramic Materials: A Comparative In Vitro Study

Mohamed RW Ali, Manal Mustafa, Asgeir Bårdsen, Maryam A Gharaei, Inge Fristad, Athanasia Bletsa

Keywords : Angiogenesis, Dental pulp calcification, Endodontic inflammation, Gene expression, Mineral trioxide aggregate, Pulpitis, Pulpotomy, Stem cells, Tricalcium silicates

Citation Information : Ali MR, Mustafa M, Bårdsen A, Gharaei MA, Fristad I, Bletsa A. Differential Responses of Human Dental Pulp Stromal Cells to Bioceramic Materials: A Comparative In Vitro Study. J Contemp Dent Pract 2021; 22 (12):1386-1392.

DOI: 10.5005/jp-journals-10024-3216

License: CC BY-NC 4.0

Published Online: 10-05-2022

Copyright Statement:  Copyright © 2021; The Author(s).


Abstract

Aim: The aim of this study was to compare the effects of white MTA-Angelus (wMTA), Biodentine® (Biodentine) and TotalFill® BC Root Repair MaterialTM putty (TotalFill) on human dental pulp stromal cells (hDPSCs) in vitro. Materials and methods: hDPSCs were isolated from third molars of healthy young adults. Material elutes at different concentrations were prepared. Cells were exposed to the eluates for 1, 3, and 7 days. Cell proliferation was evaluated using 3-(4,5-dimethyl-thiazoyl)-2, 5-diphenyl-tetrazolium bromide assay. The expression of alkaline phosphatase (ALP), osteoprotegerin (OPG), osteocalcin (OC), collagen1A (Col1A), runt-related transcription factor 2 (RUNX2), vascular endothelial growth factor-A (VEGF-A), fibroblast growth factor-1 (FGF-1), interleukin 6 (IL6), tumor necrosis factor alpha (TNFα), and interleukin-1-beta (IL1β) was determined by reverse transcription-polymerase chain reaction (RT-PCR). VEGF-A protein levels and ALP activity were quantified in the culture supernatant. Data were analyzed by two-way analysis of variance (ANOVA). p values <0.05 were considered statistically significant. Results: hDPSC proliferation was decreased in a dose-related manner for all materials on day 3. The same effect was observed with wMTA and TotalFill on day 7. RT-PCR showed that Biodentine increased the expression of the osteogenic markers ALP, OPG, and OC. TotalFill decreased the ALP expression and activity, enhanced the production of angiogenic VEGF-A, and downregulated the inflammatory IL6 on day 7. Conclusion: Although the tested materials are used interchangeably in vital pulp therapy, the findings showed varied hDPSC responses. Biodentine did not affect cell proliferation and increased the expression of osteo-/odontogenic markers compared to wMTA and TotalFill, whereas TotalFill decreased cell proliferation and exhibited enhanced angiogenic and anti-inflammatory effects over time. Clinical significance: The clinical significance of the results needs further investigation in an attempt to provide recommendations on the selection of bioceramic pulp capping material under different scenarios of pulpal pathosis.


HTML PDF Share
  1. Parirokh M, Torabinejad M. Mineral trioxide aggregate: A comprehensive literature review—Part I: Chemical, physical, and antibacterial properties. J Endod 2010;36(1):16–27. DOI: 10.1016/j.joen.2009.09.006.
  2. Parirokh M, Torabinejad M, Dummer PMH. Mineral trioxide aggregate and other bioactive endodontic cements: An updated overview—Part I: Vital pulp therapy. Int Endod J 2018;51(2):177–205. DOI: 10.1111/iej.12841.
  3. Quintana RM, Jardine AP, Grechi TR, et al. Bone tissue reaction, setting time, solubility, and pH of root repair materials. Clin Oral Investig 2019;23(3):1359–1366. DOI: 10.1007/s00784-018-2564-1.
  4. Olsson H, Petersson K, Rohlin M. Formation of a hard tissue barrier after pulp cappings in humans: A systematic review. Int Endod J 2006;39(6):429–442. DOI: 10.1111/j.1365-2591.2006.01116.x.
  5. Gronthos S, Brahim J, Li W, et al. Stem cell properties of human dental pulp stem cells. J Dent Res 2002;81(8):531–535. DOI: 10.1177/154405910208100806.
  6. Guven EP, Yalvac ME, Sahin F, et al. Effect of dental materials calcium hydroxide-containing cement, mineral trioxide aggregate, and enamel matrix derivative on proliferation and differentiation of human tooth germ stem cells. J Endod 2011;37(5):650–656. DOI: 10.1016/j.joen.2011.02.008.
  7. Parirokh M, Torabinejad M. Mineral trioxide aggregate: A comprehensive literature review—Part III: Clinical applications, drawbacks, and mechanism of action. J Endod 2010;36(3):400–413. DOI: 10.1016/j.joen.2009.09.009.
  8. Kahler B, Rossi-Fedele G. A Review of tooth discoloration after regenerative endodontic therapy. J Endod 2016;42(4):563–569. DOI: 10.1016/j.joen.2015.12.022.
  9. Duncan HF, Galler KM, Tomson PL, et al. European Society of Endodontology position statement: Management of deep caries and the exposed pulp. Int Endod J 2019;52(7):923–934. DOI: 10.1111/iej.13080.
  10. Tziafa C, Koliniotou-Koumpia E, Papadimitriou S, et al. Dentinogenic responses after direct pulp capping of miniature swine teeth with Biodentine. J Endod 2014;40(12):1967–1971. DOI: 10.1016/j.joen. 2014.07.021.
  11. De Rossi A, Silva LA, Gaton-Hernandez P, et al. Comparison of pulpal responses to pulpotomy and pulp capping with biodentine and mineral trioxide aggregate in dogs. J Endod 2014;40(9):1362–1369. DOI: 10.1016/j.joen.2014.02.006.
  12. Rajasekharan S, Martens LC, Vandenbulcke J, et al. Efficacy of three different pulpotomy agents in primary molars: a randomized control trial. Int Endod J 2017;50(3):215–228. DOI: 10.1111/iej.12619.
  13. Nasrallah H, El Noueiri B, Pilipili C, et al. Clinical and radiographic evaluations of biodentine pulpotomies in mature primary molars (stage 2). Int J Clin Pediatr Dent 2018;11(6):496–504. DOI: 10.5005/jp-journals-10005-1564.
  14. Awawdeh L, Al-Qudah A, Hamouri H, et al. Outcomes of vital pulp therapy using mineral trioxide aggregate or biodentine: A prospective randomized clinical trial. J Endod 2018;44(11):1603–1609. DOI: 10.1016/j.joen.2018.08.004.
  15. Linsuwanont P, Wimonsutthikul K, Pothimoke U, et al. Treatment outcomes of mineral trioxide aggregate pulpotomy in vital permanent teeth with carious pulp exposure: A retrospective study. J Endod 2017;43(2):225–230. DOI: 10.1016/j.joen.2016.10.027.
  16. Ali MRW, Mustafa M, Bårdsen A, et al. Tricalcium silicate cements: osteogenic and angiogenic responses of human bone marrow stem cells. Eur J Oral Sci 2019;127(3):261–268. DOI: 10.1111/eos.12613.
  17. Al-Sharabi N, Xue Y, Fujio M, et al. Bone marrow stromal cell paracrine factors direct osteo/odontogenic differentiation of dental pulp cells. Tiss Eng Part A 2014;20(21–22):3063–3072. DOI:10.1089/ten.tea.2013.0718.
  18. Gharaei MA, Xue Y, Mustafa K, et al. Human dental pulp stromal cell conditioned medium alters endothelial cell behavior. Stem cell Res Ther 2018;9(1):69. DOI: 10.1186/s13287-018-0815-3.
  19. Gronthos S, Mankani M, Brahim J, et al. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 2000;97(25):13625–13630. DOI: ORG/10.1073/PNAS.240309797.
  20. Chen L, Jiang Y, Du Z. Molecular differences between mature and immature dental pulp cells: Bioinformatics and preliminary results. Exp Ther Med 2018;15(4):3362–3368. DOI: 10.3892/etm.2018.5847.
  21. Alge CS, Hauck SM, Priglinger SG, et al. Differential protein profiling of primary versus immortalized human RPE cells identifies expression patterns associated with cytoskeletal remodeling and cell survival. J Proteome Res 2006;5(4):862–878. DOI: 10.1021/pr050420t.
  22. Pan C, Kumar C, Bohl S, et al. Comparative proteomic phenotyping of cell lines and primary cells to assess preservation of cell type-specific functions. Mol Cell Proteomics 2009;8(3):443–450. DOI: 10.1074/mcp.M800258-MCP200.
  23. Wang J, Ma H, Jin X, et al. The effect of scaffold architecture on odontogenic differentiation of human dental pulp stem cells. Biomaterials. 2011;32(31):7822–7830. DOI: 10.1016/j.biomaterials. 2011.04.034.
  24. Wongwatanasanti N, Jantarat J, Sritanaudomchai H, et al. Effect of bioceramic materials on proliferation and odontoblast differentiation of human stem cells from the apical papilla. J Endod 2018;44(8): 1270–1275. DOI: 10.1016/j.joen.2018.03.014.
  25. Youssef AR, Emara R, Taher MM, et al. Effects of mineral trioxide aggregate, calcium hydroxide, biodentine and Emdogain on osteogenesis, Odontogenesis, angiogenesis and cell viability of dental pulp stem cells. BMC Oral Health 2019;19(1):133. DOI: 10.1186/s12903-019-0827-0.
  26. Goldberg M, Njeh A, Uzunoglu E. Is Pulp Inflammation a Prerequisite for Pulp Healing and Regeneration? Mediators Inflamm. 2015;2015:347649. doi: 10.1155/2015/347649.
  27. Goldberg M, Farges JC, Lacerda-Pinheiro S, et al. Inflammatory and immunological aspects of dental pulp repair. Pharmacol Res 2008;58(2):137–147. DOI: 10.1016/j.phrs.2008.05.013.
  28. Machado J, Johnson JD, Paranjpe A. The effects of endosequence root repair material on differentiation of dental pulp cells. J Endod 2016;42(1):101–105. DOI: 10.1016/j.joen.2015.08.007.
  29. Parirokh M, Asgary S, Eghbal MJ, et al. A comparative study of white and grey mineral trioxide aggregate as pulp capping agents in dog's teeth. Dent Traumatol 2005;21(3):150–154. DOI: 10.1111/j.1600-9657.2005.00311.x.
  30. Zarrabi MH, Javidi M, Jafarian AH, et al. Histologic assessment of human pulp response to capping with mineral trioxide aggregate and a novel endodontic cement. J Endod 2010;36(11):1778–1781. DOI: 10.1016/j.joen.2010.08.024.
  31. Chang SW, Bae WJ, Yi JK, et al. Odontoblastic differentiation, inflammatory response, and angiogenic potential of 4 calcium silicate-based cements: Micromega MTA, ProRoot MTA, RetroMTA, and experimental calcium silicate cement. J Endod 2015;41(9): 1524–1529. DOI: 10.1016/j.joen.2015.04.018.
  32. Ciasca M, Aminoshariae A, Jin G, et al. A comparison of the cytotoxicity and proinflammatory cytokine production of EndoSequence root repair material and ProRoot mineral trioxide aggregate in human osteoblast cell culture using reverse-transcriptase polymerase chain reaction. J Endod 2012;38(4):486–489. DOI: 10.1016/j.joen.2011. 12.004.
  33. Kamal EM, Nabih SM, Obeid RF, et al. The reparative capacity of different bioactive dental materials for direct pulp capping. Dent Med Probl 2018;55(2):147–152. DOI: 10.17219/dmp/90257.
  34. Fang Y, Eglen RM. Three-dimensional cell cultures in drug discovery and development. SLAS Discov 2017;22(5):456–472. DOI: 10.1177/1087057117696795.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.