Histological Comparison of Post-extraction Alveolar Bone Repair Treated with Melatonin and Calcium Sulfate: An In Vivo Study in Cavia porcellus
Henrry Torres
Citation Information :
Torres H. Histological Comparison of Post-extraction Alveolar Bone Repair Treated with Melatonin and Calcium Sulfate: An In Vivo Study in Cavia porcellus. J Contemp Dent Pract 2021; 22 (7):739-744.
Aim and objective: To histologically compare alveolar bone repair after tooth extraction treated with melatonin and calcium sulfate in an in vivo experimental study in guinea pigs (Cavia porcellus).
Materials and methods: The study was of longitudinal, prospective, and experimental design in an animal bio-model. A total of 24 male guinea pigs were included, weighing from 700 to 900 g and separated into two experimental groups (melatonin and calcium sulfate) for three periods (15, 30, and 45 days) at 15-day intervals after surgery. The guinea pigs were randomly included into groups for the time evaluated.
Results: In relation to bone repair cells using calcium sulfate, the presence of osteoblasts at 15, 30, and 45 days was 39.0 ± 63, 55.3 ± 6.0, respectively, with 61.3 ± 10.0 cells per field. Regarding bone repair cells using melatonin, the presence of osteoblasts at 15, 30, and 45 days was 25.0 ± 3.7, 49.3 ± 1.5, respectively, with 53.6 ± 5.6 cells per field.
Conclusion: Both melatonin and calcium sulfate were found to be useful in bone repair at a histological and clinical level, although they present certain nonsignificant, albeit marked advantages in the bone repair process when compared with the control socket at the histological level.
Clinical significance: This research allows us to know the usefulness of these easily accessible chemicals for the generation of bone repair.
Hadjidakis DJ, Androulakis II. Bone remodeling. Ann N Y Acad Sci 2006;1092:385–396. DOI: 10.1196/annals.1365.035.
Huiskes R. If bone is the answer, then what is the question? J Anat 2000;197(Pt 2):145–156. DOI: 10.1046/j.1469-7580.2000.19720145.x.
Mano T, Akita K, Fukuda N, et al. Histological comparison of three apatitic bone substitutes with different carbonate contents in alveolar bone defects in a beagle mandible with simultaneous implant installation. J Biomed Mater Res B Appl Biomater 2020;108(4): 1450–1459. DOI: 10.1002/jbm.b.34492.
Sargolzaie N, Rafiee M, Salari Sedigh H, et al. Comparison of the effect of hemihydrate calcium sulfate granules and Cerabone on dental socket preservation: an animal experiment. J Dent Res Dent Clin Dent Prospects 2018;12(4):238–244. DOI: 10.15171/joddd.2018.037.
Hao F, Qin L, Liu J, et al. Assessment of calcium sulfate hemihydrate-tricalcium silicate composite for bone healing in a rabbit femoral condyle model. Mater Sci Eng C Mater Biol Appl 2018;88:53–60. DOI: 10.1016/j.msec.2018.02.024.
Artas G, Gul M, Acikan I, et al. A comparison of different bone graft materials in peri-implant guided bone regeneration. Braz Oral Res 2018;32:e59. DOI: 10.1590/1807-3107bor-2018.vol32.0059.
Cutando A, Gómez-Moreno G, Arana C, et al. Melatonin stimulates osteointegration of dental implants. J Pineal Res 2008;45(2):174–179. DOI: 10.1111/j.1600-079X.2008.00573.x.
Guardia J, Gómez-Moreno G, Ferrera MJ, et al. Evaluation of effects of topic melatonin on implant surface at 5 and 8 weeks in Beagle dogs. Clin Implant Dent Relat Res 2011;13(4):262–268. DOI: 10.1111/j.1708-8208.2009.00211.x.
Calvo-Guirado JL, Gómez-Moreno G, López-Marí L, et al. Actions of melatonin mixed with collagenized porcine bone versus porcine bone only on osteointegration of dental implants. J Pineal Res 2010;48(3):194–203. DOI: 10.1111/j.1600-079X.2009.00743.x.
Calvo-Guirado JL, Gómez-Moreno G, Barone A, et al. Melatonin plus porcine bone on discrete calcium deposit implant surface stimulates osteointegration in dental implants. J Pineal Res 2009;47(2):164–172. DOI: 10.1111/j.1600-079X.2009.00696.x.
Hu MH, Lee PY, Chen WC, et al. Comparison of three calcium phosphate bone graft substitutes from biomechanical, histological, and crystallographic perspectives using a rat posterolateral lumbar fusion model. Mater Si Eng C Mater Biol Appl 2014;45:82–88. DOI: 10.1016/j.msec.2014.08.065.
Kutkut A, Andreana S, Kim HL, Monaco E Jr. Extraction socket preservation graft before implant placement with calcium sulfate hemihydrate and platelet-rich plasma: a clinical and histomorphometric study in humans. J Periodontol. 2012 Apr;83(4):401–9. DOI: 10.1902/jop.2011.110237.
Cutando A, Arana C, Gómez-Moreno G, et al. Local application of melatonin into alveolar sockets of beagle dogs reduces tooth removal-induced oxidative stress. J Periodontol 2007;78(3):576–583. DOI: 10.1902/jop.2007.060244.
Schlickewei CW, Laaff G, Andresen A, et al. Bone augmentation using a new injectable bone graft substitute by combining calcium phosphate and bisphosphonate as composite–an animal model. J Orthop Surg Res 2015;10:116. DOI: 10.1186/s13018-015-0263-z.
Li JJ, Dunstan CR, Entezari A, Li Q, et al. A novel bone substitute with high bioactivity, strength, and porosity for repairing large and load-bearing bone defects. Adv Healthc Mater 2019;8(8):e1801298. DOI: 10.1002/adhm.201801298.
Sugawara A, Fujikawa K, Takagi S, Chow LC. Histological analysis of calcium phosphate bone grafts for surgically created periodontal bone defects in dogs. Dent Mater J. 2008 Nov;27(6):787–94. DOI: 10.4012/dmj.27.787.
Busenlechner D, Tangl S, Mair B, et al. Simultaneous in vivo comparison of bone substitutes in a guided bone regeneration model. Biomaterials 2008;29(22):3195–3200. DOI: 10.1016/j.biomaterials.2008.04.021.
Anbu RT, Suresh V, Gounder R, et al. Comparison of the efficacy of three different bone regeneration materials: an animal study. Eur J Dent 2019;13(1):22–28. DOI: 10.1055/s-0039-1688735.
Macedo RM, Lacerda SA, Okamoto R, et al. Vital bone formation after grafting of autogenous bone and biphasic calcium phosphate bioceramic in extraction sockets of rats: histological, histometric, and immunohistochemical evaluation. Implant Dent 2018;27(6):615–622. DOI: 10.1097/ID.0000000000000815.