The Journal of Contemporary Dental Practice

Register      Login

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue

Online First

Archive
Related articles

VOLUME 22 , ISSUE 7 ( July, 2021 ) > List of Articles

ORIGINAL RESEARCH

A Histopathology-based Assessment of Biological Behavior in Oral Hyalinizing Extraosseous Lesions by Differential Stains

Aamir M Nadeem, Bhaskar Nagaraj, Deepak A Jagadish, Dhruv Shetty, Surendra Lakshminarayana

Citation Information : Nadeem AM, Nagaraj B, Jagadish DA, Shetty D, Lakshminarayana S. A Histopathology-based Assessment of Biological Behavior in Oral Hyalinizing Extraosseous Lesions by Differential Stains. J Contemp Dent Pract 2021; 22 (7):812-828.

DOI: 10.5005/jp-journals-10024-3122

License: CC BY-NC 4.0

Published Online: 28-09-2021

Copyright Statement:  Copyright © 2021; The Author(s).


Abstract

Aim: The assessment of hyalinization to determine aggressive behavior in oral pathological lesions is a scarcely researched field that requires further exploration. The current study aims to predict the biological behavior of oral hyalinizing extraosseous lesions (OHEOL) by employing four differential stains with clinicopathologic correlation. Materials and methods: The study was performed on retrospectively diagnosed formalin-fixed paraffin-embedded cases of salivary gland tumors (SGTs) (n = 13), benign soft tissue (BST) lesions (n = 24), and oral submucous fibrosis (OSMF) (n = 53). The hematoxylin and eosin-stained sections were analyzed for the severity of hyalinization (SOH). Differential stains periodic acid Schiff (PAS), Alcian blue, safranin O, and picrosirius red with polarizing microscopy were used to assess the components of hyalinized tissue. The SOH was correlated with differential staining characteristics and clinicopathologic features to analyze possible correlation with aggressive potential in BST, advancement of disease in OSMF, and recurrence in SGT. Results: Intensity of picrosirius red stain significantly correlated with SOH of SGTs (p = 0.044). The intensity of PAS stain (p = 0.040), picrosirius red polarizing greenish-yellow color (p = 0.002), and pattern of distribution of picrosirius red (p = 0.023) significantly correlated with recurrence of SGTs. The intensity of differential stains increased with the SOH in BST lesions indicating their correlation with SOH. The intensity (p = 0.008) and pattern (p = 0.010) of Alcian blue staining and intensity of safranin O stain (p = 0.003) significantly correlated with SOH in OSMF. Picrosirius red polarizing color reddish and yellowish red (p = 0.002) significantly correlated with SOH distinguishing early and advanced OSMF. Conclusion: Picrosirius red and PAS stains are reliable indicators of SOH and recurrence potential in SGT. Alcian blue, safranin O, and picrosirius red polarizing colors enable detection of SOH and accurately distinguish early from advanced OSMF. Clinical significance: SOH can be considered as a histological predictor of aggressive biologic behavior in OHEOL. These findings will result in appropriate management protocols.


HTML PDF Share
  1. Saluja T, Iyer J. Unmasking the grey zone of hyalinization with a proposed classification of oral hyalinizing lesions. J Interdiscipl Histopathol 2017;5(1):18–21. DOI: 10.5455/jihp.20160821122428.
  2. Dicker KT, Gurski LA, Pradhan-Bhatt S, et al. Hyaluronan: a simple polysaccharide with diverse biological functions. Acta Biomater 2014;10(4):1558–1570. DOI: 10.1016/j.actbio.2013.12.019.
  3. Ropponen K, Tammi M, Parkkinen J, et al. Tumor cell-associated hyaluronan as an unfavourable prognostic factor in colorectal cancer. Cancer Res 1998;58(2):342–347.
  4. Bratthauer GL. The avidin-biotin complex (ABC) method and other avidin-biotin binding methods. Methods Mol Biol 2010;588:257–270. DOI: 10.1007/978-1-59745-324-0_26.
  5. Alturkistani HA, Tashkandi FM, Mohammedsaleh ZM. Histological stains: a literature review and case study. Glob J Health Sci 2015;8(3):72–79. DOI: 10.5539/gjhs.v8n3p72.
  6. Hui H, Ma W, Cui J, et al. Periodic acid Schiff staining method for function detection of liver cells is affected by 2% horse serum in induction medium. Mol Med Rep 2017;16(6):8062–8068. DOI: 10.3892/mmr.2017.7587.
  7. Alibegovic A, Blagus R, Martinez IZ. Safranin O without fast green is the best staining method for testing the degradation of macromolecules in a cartilage extracellular matrix for the determination of the postmortem interval. Forensic Sci Med Pathol 2020;16(2):252–258. DOI: 10.1007/s12024-019-00208-0.
  8. Meyerholz DK, Rodgers J, Castilow EM, et al. Alcian blue and Pyronine Y histochemical stains permit assessment of multiple parameters in pulmonary disease models. Vet Pathol 2009;46(2):325–328. DOI: 10.1354/vp.46-2-325.
  9. Rittié L. Method for Picrosirius red-polarization detection of collagen fibers in tissue sections. Methods Mol Biol 2017;1627:395–407. DOI: 10.1007/978-1-4939-7113-8_26.
  10. Fletcher CD. Recently characterized soft tissue tumors that bring biologic insight. Mod Pathol 2014;27(1):S98–S112. DOI: 10.1038/modpathol.2013.172.
  11. Kumari K, Ghosh S, Patil S, et al. Expression of type III collagen correlates with poor prognosis in oral squamous cell carcinoma. J Investig Clin Dent 2017;8(4):e12253. DOI: 10.1111/jicd.12253.
  12. Cottom HE, Bshena FI, Speight PM, et al. Histopathological features that predict the recurrence of odontogenic keratocysts. J Oral Pathol Med 2012;41(5):408–414. DOI: 10.1111/j.1600-0714.2011.01113.x.
  13. McGavin MD. Factors affecting visibility of a target tissue in histologic sections. Vet Pathol 2014;51(1):9–27. DOI: 10.1177/0300985813506916.
  14. Kilcoyne M, Gerlach JQ, Farrell MP, et al. Periodic acid–Schiff's reagent assay for carbohydrates in a microtiter plate format. Anal Biochem 2011;416(1):18–26. DOI: 10.1016/j.ab.2011.05.006.
  15. Lattouf R, Younes R, Lutomski D, et al. Picrosirius red staining: a useful tool to appraise collagen networks in normal and pathological tissues. J Histochem Cytochem 2014;62(10):751–758. DOI: 10.1369/0022155414545787.
  16. Hyllested JL, Veje K, Ostergaard K. Histochemical studies of the extracellular matrix of human articular cartilage—a review. Osteoarthritis Cartilage 2002;10(5):333–343. DOI: 10.1053/joca.2002.0519.
  17. Dong W, Matsuno YK, Kameyama A. A procedure for Alcian blue staining of mucins on polyvinylidene difluoride membranes. Anal Chem 2012;84(20):8461–8466. DOI: 10.1021/ac301678z.
  18. Bobati SS, Patil BV, Dombale VD. Histopathological study of salivary gland tumors. J Oral Maxillofac Pathol 2017;21(1):46–50. DOI: 10.4103/0973-029X.203762.
  19. Speight PM, Barrett AW. Salivary glands and saliva. Oral Dis 2002;8:229–240.
  20. Auclair PL, Ellis GL. Atypical features in salivary gland mixed tumors: their relationship to malignant transformation. Mod Pathol 1996;9(6):652–657.
  21. Weinreb I. Hyalinizing clear cell carcinoma of salivary gland: a review and update. Head Neck Pathol 2013;7(Suppl. 1):S20–S29. DOI: 10.1007/s12105-013-0466-8.
  22. Speight PM, Barrett AW. Salivary gland tumours: diagnostic challenges and an update on the latest WHO classification. Diagn Histopathol 2020;26(4):147–158. DOI: 10.1016/j.mpdhp.2020.01.001.
  23. Krane JF, Faquin WC. Salivary gland. In: Cibas ES, Ducatman BS, editors. Cytology diagnostic principles and clinical correlates. 4th ed. Saunders; 2014. p. 299–332.
  24. Seethala RR. Basaloid/blue salivary gland tumors. Mod Pathol 2017;30(1):S84–S95. DOI: 10.1038/modpathol.2016.190.
  25. Ito FA, Jorge J, Vargas PA, et al. Histopathological findings of pleomorphic adenomas of the salivary glands. Med Oral Patol Oral Cir Bucal 2009;14(2):E57–E61.
  26. Masamatti SS, Gosavi AV. Benign soft tissue lesions of oral cavity: a histopathological study. J Clin Biomed Sci 2016;6(3):88–90.
  27. Chouaib S, Messai Y, Couve S, et al. Hypoxia promotes tumor growth in linking angiogenesis to immune escape. Front Immunol 2012;3:21. DOI: 10.3389/fimmu.2012.00021.
  28. Auluck A, Rosin MP, Zhang L, et al. Oral submucous fibrosis, a clinically benign but potentially malignant disease: report of 3 cases and review of the literature. J Can Dent Assoc 2008;74(8): 735–740.
  29. Kamath VV. The nature of collagen in oral submucous fibrosis: a systematic review of the literature. Saudi J Oral Sci 2014;1(2):57–64. DOI: 10.4103/1658-6816.138461.
  30. Pakyari M, Farrokhi A, Maharlooei MK, et al. Critical role of transforming growth factor beta in different phases of wound healing. Adv Wound Care (New Rochelle) 2013;2(5):215–224. DOI: 10.1089/wound.2012.0406.
  31. Miyazawa K, Miyazono K. Regulation of TGF-β family signaling by inhibitory Smads. Cold Spring Harb Perspect Biol 2017;9(3):01–25. DOI: 10.1101/cshperspect.a022095.
  32. Arun Gopinathan P, Kokila G, Jyothi M, et al. Study of collagen birefringence in different grades of oral squamous cell carcinoma using Picrosirius red and polarized light microscopy. Scientifica (Cairo) 2015;2015:01–07. DOI: 10.1155/2015/802980.
  33. Tom A, Baghirath V, Krishna B, et al. Ultrastructural changes of collagen in different histopathological grades of oral submucous fibrosis. J Pharm Bioallied Sci 2019;11(Suppl. 2):S309–S313. DOI: 10.4103/JPBS.JPBS_20_19.
  34. Thakkannavar SS, Naik VV. Histochemical and immunohistochemical analysis of collagen fibers and microvascular density in various grades of oral submucous fibrosis. Iran J Pathol 2019;14(2):127–134. DOI: 10.30699/IJP.14.2.127.
  35. Ashalata G, Baghirath PV, Krishna AB, et al. Quantitative and qualitative analysis of collagen in oral submucous fibrosis. J NTR Univ Health Sci 2012;1(2):99–105. DOI: 10.4103/2277-8632.98350.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.