The Journal of Contemporary Dental Practice

Register      Login

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue

Online First

Archive
Related articles

VOLUME 23 , ISSUE 1 ( January, 2022 ) > List of Articles

ORIGINAL RESEARCH

Analysis of the Viability and Morphology of Gingival Cells on Materials Used in Novel Prosthetic Components: In Vitro Study

Rafael Cury Cecato, Elizabeth Ferreira Martinez, Cesar Augusto Magalhães Benfatti

Citation Information : Cecato RC, Martinez EF, Benfatti CA. Analysis of the Viability and Morphology of Gingival Cells on Materials Used in Novel Prosthetic Components: In Vitro Study. J Contemp Dent Pract 2022; 23 (1):22-30.

DOI: 10.5005/jp-journals-10024-3271

License: CC BY-NC 4.0

Published Online: 21-05-2022

Copyright Statement:  Copyright © 2022; The Author(s).


Abstract

Aim: The objective of this in vitro study was to evaluate the viability and morphology of human fibroblasts and keratinocytes cells, both grown on stainless steel (steel) (18Cr14Ni2.5Mo), and polyether-ether-ketone (PEEK) surfaces, hypothesizing the use of these surfaces as novel materials for prosthetic components. Materials and methods: Gingival human keratinocytes and gingival human fibroblasts lines were grown on discs made by steel (n = 36), PEEK (n = 36), and titanium (Ti) (Ti6A14V) (n = 36)—control. For viability assay, cultures were grown at 24 hours (TV1), 48 hours (TV2), and 72 hours (TV3) times and evaluated by the colorimetric tetrazolium assay (MTT). For morphology and cell adhesion assays, after 24 hours (TM1), 48 hours (TM2), and 96 hours (TM3) of cell culture, cells were examined by scanning electron microscopy (SEM) and analyzed at magnifications with 500×, 1,000×, and 2,500×. Results: Regarding the viability, the keratinocytes did not present statistical difference on the different materials, in TV1 and TV3 times of culture. Their growth rate increased on all materials, being more expressive in steel; the fibroblasts did not present statistical difference on the different materials, in TV2 and TV3 times of culture. The growth rate of these decreased on all materials, being more expressive in PEEK. The morphology analyses show increase in cell numbers, adequate spreading, and adhesion at all cultivation times (TM1, TM2, and TM3) in both cell lines, on all materials. Conclusion: All materials tested are suitable for use in the manufacture of prosthetic components for implant-supported rehabilitations, considering the limitations of this study. Clinical significance: This work analyzes the cellular response of cells present in the human gingiva, as a way to simulate the peri-implant tissue response around novel angular prosthetic components made of stainless steel and PEEK.


HTML PDF Share
  1. Lavelle CL. Mucosal seal around endosseous dental implants. J Oral Implantol 1981;9(3):357–371. PMID: 6942173.
  2. Gould TRL. Clinical implications of the attachment of oral tissue to permucosal implants. Tissue integration in oral and maxillo-facial reconstruction. In: Proc an Int Congr Brussels Excerpta Medica. 1985. p. 253–270.
  3. Narula IS, Chaubey KK, Arora VK, et al. Implanto-gingival complex: an indispensable junctional complex for the clinical success of an implant. J Dent Implant 2012;2(2):110–114. DOI: 10.4103/0974-6781.102225.
  4. Welander M, Abrahamsson I, Berglundh T. The mucosal barrier at implant abutments of different materials. Clin Oral Implants Res 2008;19(7):635–641. DOI: 10.1111/j.1600-0501.2008.01543.x.
  5. Linder L. Osseointegration of metallic implants. I. Light microscopy in the rabbit. Acta Orthop Scand 1989;60(2):129–134. DOI: 10.3109/17453678909149239.
  6. Linder L, Obrant K, Boivin G, et al. Osseointegration of metallic implants. II. Transmission electron microscopy in the rabbit. Acta Orthop Scand 1989;60(2):135–139. DOI: 10.3109/17453678909149240.
  7. Carpena ALM de M, Kinalski M de A, Bergoli CD, et al. Novel bendable abutments as a solution to correct unfavorable implant inclination. A clinical report. J Esthet Restor Dent 2020;32(8):757–762. DOI: 10.1111/jerd.12654.
  8. Ruales-Carrera E, Pauletto P, Apaza-Bedoya K, et al. Peri-implant tissue management after immediate implant placement using a customized healing abutment. J Esthet Restor Dent 2019;31(6):533–541. DOI: 10.1111/jerd.12512.
  9. Jones DP, Leach DC, Moore DR. Mechanical properties of poly (ether-ether-ketone) for engineering applications. Polymer (Guildf) 1985;26:1385–1393. DOI: 10.1016/0032-3861(85)90316-7.
  10. Williams D, McNamara A, Turner R. Potential of polyetheretherketone (PEEK) and carbon fibre reinforced PEEK in medical applications. J Mater 1987;18:267. https://doi.org/10.1007/BF01728981.
  11. Marya K, Dua JS, Chawla S, et al. Polyetheretherketone (PEEK) dental implants : a case for immediate loading. Int J Oral Implantol Clin Res 2011;2(2):97–103. DOI: 10.5005/jp-journals-10012-1043.
  12. Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 2007;28(32):4845–4869. DOI: 10.1016/j.biomaterials.2007.07.013.
  13. Passoni BB, Venâncio F, Formiga M de C, et al. Implante imediato com provisionalização imediata através de cicatrizador multifuncional de PEEK. Implant News Perio 2017;2(4):885–892. ID: biblio-877294.
  14. Blackwood DJ, Pereira BP. No corrosion of 304 stainless steel implant after 40 years of service. J Mater Sci Mater Med 2004;15(7):755–758. DOI: 10.1023/b:jmsm.0000032814.20695.3c.
  15. American Society for Testing and Materials (ASTM). F138−13a-standard specification for wrought 18chromium-14nickel-2.5molybdenum stainless steel bar and wire for surgical implants (UNS S31673). 2013.
  16. Buss GAM, Donath KS, Vicente MG. Utilização de aços inoxidáveis em implantes. Bol Inf Tecnovigilância 2011. p. 1–6.
  17. Donachie M. Biomedical alloys. Adv Mater Process 1998;154:63. ISSN: 0882-7958.
  18. Associação Brasileira de Normas Técnicas. Implantes cirúrgicos–Materiais metálicos Parte 1: Aço inoxidável conformado ABNT NBR ISO 5832-1:2008. 2010.
  19. American Society for Testing and Materials (ASTM). F136–12a-standard specification for wrought titanium-6aluminum-4vanadium eli (extra low interstitial) alloy for surgical implant applications (UNS R56401). 2013.
  20. Huacho PMM, Nogueira MNM, Basso FG, et al. Analyses of biofilm on implant abutment surfaces coating with diamond-like carbon and biocompatibility. Braz Dent J 2017;28(3):317–323. DOI: 10.1590/0103-6440201601136.
  21. Martinez EF, Araújo VC, Sousa SOM, et al. TGF-β1 enhances the expression of α-smooth muscle actin in cultured human pulpal fibroblasts: immunochemical and ultrastructural analyses. J Endod 2007;33(11):1313–1318. DOI: 10.1016/j.joen.2007.07.040.
  22. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983;65(1-2):55–63. DOI: 10.1016/0022-1759(83)90303-4.
  23. Berglundh T, Lindhe J, Ericsson I, et al. The soft tissue barrier at implants and teeth. Clin Oral Implants Res 1991;2(2):81–90. DOI: 10.1034/j.1600-0501.1991.020206.x.
  24. Atsuta I, Ayukawa Y, Kondo R, et al. Soft tissue sealing around dental implants based on histological interpretation. J Prosthodont Res 2016;60(1):3–11. DOI: 10.1016/j.jpor.2015.07.001.
  25. Berglundh T, Lindhe J, Marinell C, et al. Soft tissue reaction to de novo plaque formation on implants and teeth. An experimental study in the dog. Clin Oral Implants Res 1992;3(1):1–8. DOI: 10.1034/j.1600-0501.1992.030101.x.
  26. Newman MG, Takey HH, Klollevold PR, et al. Clinical periodontology. 11th ed. Elsevier/Saunders; 2012.
  27. Merrick P, Meyer AA, Herzog S, et al. Scanning electron microscopy of cultured human keratinocytes. J Burn Care Rehabil 1990;11(3): 228–236. DOI: 10.1097/00004630-199005000-00009.
  28. Den Braber ET, De Ruijter JE, Ginsel LA, et al. Quantitative analysis of fibroblast morphology on microgrooved surfaces with various groove and ridge dimensions. Biomaterials 1996;17(21):2037–2044. DOI: 10.1016/0142-9612(96)00032-4.
  29. Van Tonder A, Joubert AM, Cromarty A. Limitations of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay when compared to three commonly used cell enumeration assays. BMC Res Notes 2015;8:47. DOI: 10.1186/s13104-015-1000-8.
  30. Shah FA, Trobos M, Thomsen P, et al. Commercially pure titanium (cp-Ti) versus titanium alloy (Ti6Al4V) materials as bone anchored implants–is one truly better than the other? Mater Sci Eng C 2016;62:960–966. DOI: 10.1016/j.msec.2016.01.032.
  31. Steinemann SG. Titanium–the material of choice? Periodontol 2000 1998;17:7–21. DOI: 10.1111/j.1600-0757.1998.tb00119.x.
  32. Velasco-Ortega E, Jos A, Cameán AM, et al. In vitro evaluation of cytotoxicity and genotoxicity of a commercial titanium alloy for dental implantology. Mutat Res Genet Toxicol Environ Mutagen 2010;702(1):17–23. DOI: 10.1016/j.mrgentox.2010.06.013.
  33. Willis J, Li S, Crean SJ, et al. Is titanium alloy Ti-6Al-4 V cytotoxic to gingival fibroblasts–a systematic review. Clin Exp Dent Res 2021;7(6):1037–1044. DOI: 10.1002/cre2.444.
  34. Wenz LM, Memitt K, Brown SA, et al. In vitro biocompatibility of polyetheretherketone and polysulfone composites. J Biomed Mater Res 1990;24(2):207–215. DOI: 10.1002/jbm.820240207.
  35. Hunter A, Archer CW, Walker PS, et al. Attachment and proliferation of osteoblasts and fibroblasts on biomaterials for orthopaedic use. Biomaterials 1995;16(4):287–295. DOI: 10.1016/0142-9612(95)93256-d.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.