The Journal of Contemporary Dental Practice

Register      Login



Volume / Issue

Online First

Related articles

VOLUME 23 , ISSUE 11 ( November, 2022 ) > List of Articles


Impact of Different Preparations of Tooth Graft vs Xenogeneic Bone Graft on Bone Healing: An Experimental Study

Yousef Ali Abdulrahman Farhan, Sally El-Sayed Abdelsameaa, Mahitabe Elgamily, Sally Awad

Keywords : Bone defect, Dentin particulate, Osteopontin, Tooth graft, Xenograft

Citation Information : Farhan YA, Abdelsameaa SE, Elgamily M, Awad S. Impact of Different Preparations of Tooth Graft vs Xenogeneic Bone Graft on Bone Healing: An Experimental Study. J Contemp Dent Pract 2022; 23 (11):1163-1172.

DOI: 10.5005/jp-journals-10024-3438

License: CC BY-NC 4.0

Published Online: 17-03-2023

Copyright Statement:  Copyright © 2022; The Author(s).


Aim: This study aims to compare the effect of demineralized xenogeneic tooth graft in its two forms, particulate and block, with bovine xenograft in the healing of a rabbit tibial bone defect model. Materials and methods: Two monocortical bony defects were made in the right tibias of 36 rabbits, and were divided into four groups. Group I defects were left empty, while group II, III, and IV were filled with bovine xenograft, demineralized particulate tooth graft, and demineralized perforated block tooth graft, respectively for evaluation of the bone healing process. Three rabbits from each group were euthanized at 2, 4, and 6 weeks after surgery. The bone specimens were processed and stained with hematoxylin and eosin (H&E) and osteopontin (OPN) immunohistochemical staining. The results were subjected to image analysis and quantitative evaluation. Results: Demineralized particulate tooth graft showed the best bone healing capacity compared to all other groups at all time points tested, as it showed a large amount of the formed bone, rapid closure of the defect with a significant increase in OPN expression, and the least amount of the residual grafted particles. Conclusion: In comparison to bovine xenograft and demineralized dentin block graft, the demineralized particulate tooth grafting material is a promising bone grafting substitute as it proved to be osteoconductive, biocompatible, and bioresorbable. Clinical significance: Demineralized tooth grafting material can aid in the regeneration of large bone defects, leading to improvement in the filling of the bone defects which can help in oral and maxillofacial reconstruction.

  1. Fernandez de Grado G, Keller L, Idoux-Gillet Y, et al. Bone substitutes: a review of their characteristics, clinical use, and perspectives for large bone defects management. J Tissue Eng 2018;9:2041731418776819. DOI: 10.1177/2041731418776819.
  2. Elsalanty ME, Genecov DG. Bone grafts in craniofacial surgery. Craniomaxillofac Trauma Reconstr 2009;2(3):125–134. DOI: 10.1055/s-0029-1215875.
  3. Zhao R, Yang R, Cooper PR, et al. Bone grafts and substitutes in dentistry: a review of current trends and developments. Molecules 2021;26(10):3007. DOI: 10.3390/molecules26103007.
  4. Wang W, Yeung KWK. Bone grafts and biomaterials substitutes for bone defect repair: a review. Bioact Mater 2017;2(4):224–247. DOI: 10.1016/j.bioactmat.2017.05.007.
  5. Kao ST, Scott DD. A review of bone substitutes. Oral Maxillofac Surg Clin North Am 2007;19(4):513–521. DOI: 10.1016/j.coms.2007.06.002.
  6. Sakkas A, Wilde F, Heufelder M, et al. Autogenous bone grafts in oral implantology-is it still a “gold standard”? A consecutive review of 279 patients with 456 clinical procedures. Int J Implant Dent 2017;3(1):23. DOI: 10.1186/s40729-017-0084-4.
  7. Haugen HJ, Lyngstadaas SP, Rossi F, et al. Bone grafts: which is the ideal biomaterial? J Clin Periodontol 2019;46(Suppl 21):92–102. DOI: 10.1111/jcpe.13058.
  8. Turri A, Elgali I, Vazirisani F, et al. Guided bone regeneration is promoted by the molecular events in the membrane compartment. Biomaterials 2016;84:167–183. DOI: 10.1016/j.biomaterials.2016. 01.034.
  9. Kim Y-K, Um I-W, Murata M. Tooth bank system for bone regeneration- safety report. J Hard Tissue Biol 2014;23(3):371–376. DOI: 10.2485/jhtb. 23.371.
  10. Janjua OS, Qureshi SM, Shaikh MS, et al. Autogenous tooth bone grafts for repair and regeneration of maxillofacial defects: a narrative review. Int J Environ Res Public Health 2022;19(6):3690. DOI: 10.3390/ijerph19063690.
  11. Koparal M, Irtegün S, Alan H, et al. Effects of melatonin on tibia bone defects in rats. Int J Morphol 2016;34(2):763–769. DOI:
  12. Sodek J, Ganss B, McKee MD. Osteopontin. Crit Rev Oral Biol Med 2000;11(3):279–303. DOI: 10.1177/10454411000110030101.
  13. Cohen J. Statistical power analysis for the behavioral sciences, 2nd ed., Hillsdale, NJ: Erlbaum; 1988;273:406.
  14. Kim J-Y, Kim K-W, Um I-W, et al. Bone healing capacity of demineralized dentin matrix materials in a mini-pig cranium defect. J Korean Dent Sci 2012;5(1):21–28. DOI: 10.5856/JKDS.2012.5.1.21.
  15. Andersson L. Dentin xenografts to experimental bone defects in rabbit tibia are ankylosed and undergo osseous replacement. Dent Traumatol 2010;26(5):398–402. DOI: 10.1111/j.1600-9657.2010.00912.x.
  16. Moon Y-S, Sohn D-S, Kim G, et al. Comparative histomorphometric evaluation of bone regeneration with different preparations of xenogeneic tooth block bone. Int J Oral Maxillofac Implants 2019;34(6):1413–1422. DOI: 10.11607/jomi.7290.
  17. Minetti E, Berardini M, Trisi P. A new tooth processing apparatus allowing to obtain dentin grafts for bone augmentation: the tooth transformer. Open Dent J 2019;13(1):6–14. DOI: 10.2174/1874210601913010006.
  18. Joshi CP, Dani NH, Khedkar SU. Alveolar ridge preservation using autogenous tooth graft versus beta-tricalcium phosphate alloplast: a randomized, controlled, prospective, clinical pilot study. J Indian Soc Periodontol 2016;20(4):429–434. DOI: 10.4103/0972-124X.188335.
  19. Sodek J, Batista Da Silva AP, Zohar R. Osteopontin and mucosal protection. J Dent Res 2006;85(5):404–415. DOI: 10.1177/154405910 608500503.
  20. Chin H-J, Dobbie MS, Gao X, et al. Asian mouse mutagenesis resource association (AMMRA): mouse genetics and laboratory animal resources in the Asia Pacific. Mamm Genome 2022;33(1):192–202. DOI: 10.1007/s00335-021-09912-1.
  21. Ying S, Tan M, Feng G, et al. Erratum: low-intensity pulsed ultrasound regulates alveolar bone homeostasis in experimental periodontitis by diminishing oxidative stress: erratum. Theranostics 2022;12(3): 1337–1340. DOI: 10.7150/thno.69529.
  22. Titsinides S, Agrogiannis G, Karatzas T. Bone grafting materials in dentoalveolar reconstruction: a comprehensive review. Jpn Dent Sci Rev 2019;55(1):26–32. DOI: 10.1016/j.jdsr.2018.09.003.
  23. Tovar N, Jimbo R, Gangolli R, et al. Evaluation of bone response to various anorganic bovine bone xenografts: an experimental calvaria defect study. Int J Oral Maxillofac Surg 2014;43(2):251–260. DOI: 10.1016/j.ijom.2013.07.005.
  24. Abdel-Ghany H, Khashaba M, El Rouby D, et al. Comparative effectiveness of two different forms of phytoestrogens as a graft material in bony defects. J Oral Maxillofac Surg Med Pathol 2017;29(5):405–410. DOI:
  25. Sohn D-S, Moon Y-S. Histomorphometric study of rabbit's maxillary sinus augmentation with various graft materials. Anat Cell Biol 2018;51(Suppl 1):S1–S12. DOI: 10.5115/acb.2018.51.S1.S1.
  26. Brito MA, Mecca LEA, Sedoski TDS, et al. Histological comparison between biphasic calcium phosphate and deproteinized bovine bone on critical-size bone defects. Braz Dent J 2021;32(1):26–33. DOI: 10.1590/0103-6440202103583.
  27. Peng W, Kim I-K, Cho H-Y, et al. The healing effect of platelet-rich plasma on xenograft in peri-implant bone defects in rabbits. Maxillofac Plast Reconstr Surg 2016;38(1):16. DOI: 10.1186/s40902-016-0061-5.
  28. Lee Y-C, Chan Y-H, Hsieh S-C, et al. Comparing the osteogenic potentials and bone regeneration capacities of bone marrow and dental pulp mesenchymal stem cells in a rabbit calvarial bone defect model. Int J Mol Sci 2019;20(20):5015. DOI: 10.3390/ijms20205015.
  29. Traini T, Degidi M, Sammons R, et al. Histologic and elemental microanalytical study of anorganic bovine bone substitution following sinus floor augmentation in humans. J Periodontol 2008;79(7):1232–1240. DOI: 10.1902/jop.2008.070504.
  30. Ezirganli S, Kazancioglu HO, Mihmanli A, et al. Effects of different biomaterials on augmented bone volume resorptions. Clin Oral Implants Res 2015;26(12):1482–1488. DOI: 10.1111/clr.12495.
  31. de Almeida JM, Bosco AF, Faleiros PL, et al. Effects of oestrogen deficiency and 17β-estradiol therapy on bone healing in calvarial critical size defects treated with bovine bone graft. Arch Oral Biol 2015;60(4):631–641. DOI: 10.1016/j.archoralbio.2015.01.009.
  32. Sharma RI, Snedeker JG. Biochemical and biomechanical gradients for directed bone marrow stromal cell differentiation toward tendon and bone. Biomaterials 2010;31(30):7695–7704. DOI: 10.1016/j.biomaterials.2010.06.046.
  33. Chang B-S, Lee iCKfC-K, Hong K-S, et al. Osteoconduction at porous hydroxyapatite with various pore configurations. Biomaterials 2000;21(12):1291–1298. DOI: (00)00030-2.
  34. Murata M, Kawai T, Kawakami T, et al. Human acid-insoluble dentin with BMP-2 accelerates bone induction in subcutaneous and intramuscular tissues. J Ceram Soc Japan 2010;118(1378):438–441. DOI:
  35. Park M, Mah Y-J, Kim D-H, et al. Demineralized deciduous tooth as a source of bone graft material: its biological and physicochemical characteristics. Oral Surg Oral Med Oral Pathol Oral Radiol 2015;120(3):307–314. DOI: 10.1016/j.oooo.2015.05.021.
  36. Sohn D-S, Kim J-R, Kim H-G, et al. Comparison of immunohistochemical analysis on sinus augmentation using demineralized tooth graft and bovine bone. J Korean Assoc Oral Maxillofac Surg 2021;47(4):269–278. DOI: 10.5125/jkaoms.2021.47.4.269.
  37. Shapoff CA, Bowers GM, Levy B, et al. The effect of particle size on the osteogenic activity of composite grafts of allogeneic freeze-dried bone and autogenous marrow. J Periodontol 1980;51(11):625–630. DOI: 10.1902/jop.1980.51.11.625.
  38. Xu X, Sohn D-S, Kim H-G, et al. Comparative histomorphometric analysis of maxillary sinus augmentation with deproteinized bovine bone and demineralized particulate human tooth graft. Implant Dent 2018;27(3):324–331. DOI: 10.1097/ID.0000000000000755.
  39. Bhaskar SN, Cutright DE, Knapp MJ, et al. Tissue reaction to intrabony ceramic implants. Oral Surg Oral Med Oral Pathol 1971;31(2):282–289. DOI:
  40. Al-Asfour A, Farzad P, Al-Musawi A, et al. Demineralized xenogenic dentin and autogenous bone as onlay grafts to rabbit tibia. Implant Dent 2017;26(2):232–237. DOI: 10.1097/ID.0000000000000518.
  41. Park S-m, Kim D-H, Pang E-K. Bone formation of demineralized human dentin block graft with different demineralization time: in vitro and in vivo study. J Craniomaxillofac Surg 2017;45(6):903–912. DOI: 10.1016/j.jcms.2017.03.007.
  42. Wang KX, Denhardt DT. Osteopontin: role in immune regulation and stress responses. Cytokine Growth Factor Rev 2008;19(5–6):333–345. DOI: 10.1016/j.cytogfr.2008.08.001.
  43. Laçin N, İzol BS, Özkorkmaz EG, et al. The effect of graft application and simvastatin treatment on tibial bone defect in rats. A histological and immunohistochemical study. Acta Cir Bras 2019;34(4):e201900408. DOI: 10.1590/s0102-865020190040000008.
  44. Sakamoto A, Oda Y, Iwamoto Y, et al. A comparative study of fibrous dysplasia and osteofibrous dysplasia with regard to expressions of c-fos and c-jun products and bone matrix proteins: a clinicopathologic review and immunohistochemical study of c-fos, c-jun, type I collagen, osteonectin, osteopontin, and osteocalcin. Hum Pathol 1999;30(12):1418–1426. DOI: 10.1016/s0046-8177(99)90162-4.
  45. Wu L, Zhao X, He B, et al. The possible roles of biological bone constructed with peripheral blood derived EPCs and BMSCs in osteogenesis and angiogenesis. Biomed Res Int 2016;2016:8168943. DOI: 10.1155/2016/8168943.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.