The Journal of Contemporary Dental Practice

Register      Login



Volume / Issue

Online First

Related articles

VOLUME 23 , ISSUE 12 ( December, 2022 ) > List of Articles


A New Proposal for Calibrated Gauges for Removable Partial Dentures: A Finite Element Analysis

Mariana Domingues Pordeus, Giulia Dani Gasparetto, Leonardo Mendes Ribeiro Machado, Pedro Yoshito Noritomi, Rodrigo Moreira Bringel da Costa, Ana Paula Chappuis-Chocano, Helena Sandrini Venante, Joel Ferreira Santiago Junior, Vinicius Carvalho Porto

Keywords : Crowns, Dental clasps, Dental prosthesis design, Finite element analysis, Removable partial denture

Citation Information : Pordeus MD, Gasparetto GD, Machado LM, Noritomi PY, da Costa RM, Chappuis-Chocano AP, Venante HS, Junior JF, Porto VC. A New Proposal for Calibrated Gauges for Removable Partial Dentures: A Finite Element Analysis. J Contemp Dent Pract 2022; 23 (12):1230-1236.

DOI: 10.5005/jp-journals-10024-3453

License: CC BY-NC 4.0

Published Online: 13-04-2023

Copyright Statement:  Copyright © 2022; The Author(s).


Aim: The aim of this study was to evaluate the stress distribution of a planned removable partial denture (RPD) using new proposals for calibrated gauges of 0.3 mm and 0.35 mm undercuts through the three-dimensional (3D) finite element methodology, and compare them with 0.25 mm and 0.5 mm gauges that are already existing in clinical practice. Materials and methods: Kennedy class-I edentulous 3D models and their respective RPDs (InVesalius software; Rhinoceros and SolidWorks CAD) were created and exported to the finite element program HyperMesh 2019 for mesh configuration. In the following steps, axial loading (0°) of 40 N per point was performed, with 3 points on the molars and 2 points on the premolars, totaling 280 N unilaterally. The model was processed by the OptiStruct 2019 software and imported into the HyperView 2019 software to obtain the stress maps (MPa). Results: The use of 0.30 and 0.35 mm calibrated gauges presented tensions similar to those with the 0.25 mm gauge (gold standard) and caused no significant damage to biological structures. The use of a 0.5 mm undercut caused greater traction force in the periodontal ligament of the abutments. Conclusions: The 0.35 mm undercut seems promising as it presented more favorable results in this simulation, on the other hand, a 0.5 mm undercut is greater than that necessary for retainers made of CoCr. Clinical significance: This study aims to measure a new undercut gauge (0.35 mm) to increase the retention area in abutment teeth of removable partial dentures.

PDF Share
  1. Jones JD, Turkyilmaz I, Garcia LT. Removable partial dentures–treatment now and for the future. Tex Dent J 2010;127(4):365–372. PMID: 20446487
  2. Bohnenkamp DM. Removable partial dentures: Clinical concepts. Dent Clin North Am 2014;58(1):69–89. DOI: 10.1016/j.cden.2013.09.003.
  3. Campbell SD, Cooper L, Craddock H, et al. Removable partial dentures: The clinical need for innovation. J Prosthet Dent 2017;118(3):273–280. DOI: 10.1016/j.prosdent.2017.01.008.
  4. Bezzon OL, Mattos MG, Ribeiro RF. Surveying removable partial dentures: The importance of guiding planes and path of insertion for stability. J Prosthet Dent 1997;78(4):412–418. DOI: 10.1016/s0022-3913(97)70051-9.
  5. de Aquino AR, Barreto AO, de Aquino LM, et al. Longitudinal clinical evaluation of undercut areas and rest seats of abutment teeth in removable partial denture treatment. J Prosthodont 2011;20(8): 639–642. DOI: 10.1111/j.1532-849X.2011.00766.x.
  6. Sayed ME, Busaily IA, Nahari RJ, et al. Evaluation of cast re-orientation on a dental surveyor using three tripod techniques: A survey and in vitro study. J Prosthodont 2018;27(8):700–707. DOI: 10.1111/jopr.12581.
  7. Lee H, Kwon KR. A CAD-CAM device for preparing guide planes for removable partial dentures: A dental technique. J Prosthet Dent 2019;122(1):10–13. DOI: 10.1016/j.prosdent.2018.06.011.
  8. Holt JE. Guiding planes: When and where. J Prosthet Dent 1981;46(1):4–6. DOI: 10.1016/0022-3913(81)90126-8.
  9. Waghorn S, Kuzmanovic DV. Technique for preparation of parallel guiding planes for removable partial dentures. J Prosthet Dent 2004;92(2):200–201. DOI: 10.1016/j.prosdent.2004.05.011.
  10. Moldovan O, Rudolph H, Luthardt RG. Clinical performance of removable dental prostheses in the moderately reduced dentition: A systematic literature review. Clin Oral Investig 2016;20(7):1435–1447. DOI: 10.1007/s00784-016-1873-5.
  11. Khan SB, Geerts GA. Aesthetic clasp design for removable partial dentures: A literature review. SADJ 2005;60(5):190–194. PMID: 16052751.
  12. Cheng H, Xu M, Zhang H, et al. Cyclic fatigue properties of cobalt-chromium alloy clasps for partial removable dental prostheses. J Prosthet Dent 2010;104(6):389–396. DOI: 10.1016/S0022-3913(10)60173-4.
  13. Davenport JC, Basker RM, Heath JR, et al. The removable partial denture equation. Br Dent J 2000;189(8):414–424. DOI: 10.1038/sj.bdj.4800787.
  14. Mamoun JS. The path of placement of a removable partial denture: A microscope based approach to survey and design. J Adv Prosthodont 2015;7(1):76–84. DOI: 10.4047/jap.2015.7.1.76.
  15. Tribst JPM, Dal Piva AMdeO, Borges ALS, et al. Effect of different materials and undercut on the removal force and stress distribution in circumferential clasps during direct retainer action in removable partial dentures. Dent Mater 2020;36(2):179–186. DOI: 10.1016/
  16. Preshaw PM, Walls AW, Jakubovics NS, et al. Association of removable partial denture use with oral and systemic health. J Dent 2011;39(11):711–719. DOI: 10.1016/j.jdent.2011.08.018.
  17. Jorge JH, Quishida CC, Vergani CE, et al. Clinical evaluation of failures in removable partial dentures. J Oral Sci 2012;54(4):337–342. DOI: 10.2334/josnusd.54.337.
  18. Tada S, Ikebe K, Matsuda K, et al. Multifactorial risk assessment for survival of abutments of removable partial dentures based on practice-based longitudinal study. J Dent 2013;41(12):1175–1180. DOI: 10.1016/j.jdent.2013.07.018.
  19. Tada S, Allen PF, Ikebe K, et al. Impact of periodontal maintenance on tooth survival in patients with removable partial dentures. J Clin Periodontol 2015;42(1):46–53. DOI: 10.1111/jcpe.12320.
  20. Celebić A, Knezović-Zlatarić D. A comparison of patient's satisfaction between complete and partial removable denture wearers. J Dent 2003;31(7):445–451. DOI: 10.1016/s0300-5712(03)00094-0.
  21. Mourshed B, Qaed NM, Al-Shamiri HM, et al. The effect of environment (dry and natural saliva) on clasp retention: In vitro study – Part I. Eur J Dent 2017;11(3):352–356. DOI: 10.4103/ejd.ejd_158_17.
  22. Arda T, Arikan A. An in vitro comparison of retentive force and deformation of acetal resin and cobalt-chromium clasps. J Prosthet Dent 2005;94(3):267–274. DOI: 10.1016/j.prosdent.2005.06.009.
  23. Zarrati S, Sadighpour L, Jahanian G. Comparison of clasp retention on enamel and composite resin-recontoured abutments following repeated removal in vitro. J Prosthet Dent 2010;103(4):240–244. DOI: 10.1016/S0022-3913(10)60037-6.
  24. Tanaka A, Miyake N, Hotta H, et al. Change in the retentive force of Akers clasp for zirconia crown by repetitive insertion and removal test. J Prosthodont Res 2019;63(4):447–452. DOI: 10.1016/j.jpor.2019.02.005.
  25. Kim D, Park C, Yi Y, et al. Comparison of cast Ti-Ni alloy clasp retention with conventional removable partial denture clasps. J Prosthet Dent 2004;91(4):374–382. DOI: 10.1016/j.prosdent.2004.02.015.
  26. Schipper RG, Silletti E, Vingerhoeds MH. Saliva as research material: Biochemical, physicochemical and practical aspects. Arch Oral Biol 2007;52(12):1114–1135. DOI: 10.1016/j.archoralbio.2007.06.009.
  27. Pellizzer EP, Verri FR, Falcón-Antenucci RM, et al. Stress analysis in platform-switching implants: A 3-dimensional finite element study. J Oral Implantol 2012;38(5):587–594. DOI: 10.1563/AAID-JOI-D-10-00041.
  28. Bhering CL, Mesquita MF, Kemmoku DT, et al. Comparison between all-on-four and all-on-six treatment concepts and framework material on stress distribution in atrophic maxilla: A prototyping guided 3D-FEA study. Mater Sci Eng C Mater Biol Appl 2016;69:715–725. DOI: 10.1016/j.msec.2016.07.059.
  29. Verri FR, Santiago JF Jr, Almeida DA, et al. Biomechanical three-dimensional finite element analysis of single implant-supported prostheses in the anterior maxilla, with different surgical techniques and implant types. Int J Oral Maxillofac Implants 2017;32(4):e191–e198. DOI: 10.11607/jomi.5472.
  30. Santiago Junior JF, Pellizzer EP, Verri FR, et al. Stress analysis in bone tissue around single implants with different diameters and veneering materials: A 3D finite element study. Mater Sci Eng C Mater Biol Appl 2013;33(8):4700–4714. DOI: 10.1016/j.msec.2013.07.027.
  31. Mizuno Y, Gonda T, Takahashi T, et al. Root Fracture of Abutment Teeth for Partial Removable Dental Prostheses. Int J Prosthodont 2016;29(5):461–466. DOI: 10.11607/ijp.4327.
  32. Baggi L, Cappelloni I, Di Girolamo M, et al. The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: A three-dimensional finite element analysis. J Prosthet Dent 2008;100(6):422–431. DOI: 10.1016/S0022-3913(08)60259-0.
  33. Alageel O, Alsheghri AA, Algezani S, et al. Determining the retention of removable partial dentures. J Prosthet Dent 2019;122(1):55–62.e3. DOI: 10.1016/j.prosdent.2018.06.015.
  34. Muraki H, Wakabayashi N, Park I, et al. Finite element contact stress analysis of the RPD abutment tooth and periodontal ligament. J Dent 2004;32(8):659–665. DOI: 10.1016/j.jdent.2004.07.003.
  35. Sinescu C, Duma VF, Dodenciu D, et al. Mechanical properties of the periodontal system and of dental constructs deduced from the free response of the tooth. J Healthc Eng 2018;2018:4609264. DOI: 10.1155/2018/4609264.
  36. Wu B, Pu P, Zhao S, et al. Frequency-related viscoelastic properties of the human incisor periodontal ligament under dynamic compressive loading. PLoS One 2020;15(7):e0235822. DOI: 10.1371/journal.pone.0235822.
  37. Nakamura Y, Kanbara R, Ochiai KT, et al. A finite element evaluation of mechanical function for 3 distal extension partial dental prosthesis designs with a 3-dimensional nonlinear method for modeling soft tissue. J Prosthet Dent 2014;112(4):972–980. DOI: 10.1016/j.prosdent.2014.03.011.
  38. Ortiz-Puigpelat O, Lázaro-Abdulkarim A, de Medrano-Reñé JM, et al. Influence of implant position in implant-assisted removable partial denture: A three-dimensional finite element analysis. J Prosthodont 2019;28(2):e675–e681. DOI: 10.1111/jopr.12722.
  39. Chen X, Mao B, Zhu Z, et al. A three-dimensional finite element analysis of mechanical function for 4 removable partial denture designs with 3 framework materials: CoCr, Ti-6Al-4V alloy and PEEK. Sci Rep 2019;9(1):13975. DOI: 10.1038/s41598-019-50363-1.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.