The Journal of Contemporary Dental Practice

Register      Login



Volume / Issue

Online First

Related articles

VOLUME 23 , ISSUE 2 ( February, 2022 ) > List of Articles


Techniques for Extraction Socket Regeneration for Alveolar Ridge Preservation

Mohammed A Jafer, Ruba MA Salem, Fatimah B Hakami, Raghad E Ageeli, Tamador A Alhazmi, Shilpa Bhandi, Shankargouda Patil

Keywords : Alveolar ridge preservation, Autologous platelet concentrates, Barrier membranes, Bone grafts, Growth factors, Immediate implantation, Socket preservation, Tissue engineering, Tooth bone grafts

Citation Information : Jafer MA, Salem RM, Hakami FB, Ageeli RE, Alhazmi TA, Bhandi S, Patil S. Techniques for Extraction Socket Regeneration for Alveolar Ridge Preservation. J Contemp Dent Pract 2022; 23 (2):245-250.

DOI: 10.5005/jp-journals-10024-3247

License: CC BY-NC 4.0

Published Online: 10-06-2022

Copyright Statement:  Copyright © 2022; The Author(s).


Background: Alveolar bone undergoes volumetric changes after extraction due to physiologic bone remodeling. The amount of alveolar bone available during prosthodontic treatment can affect the esthetic outcome of the treatment and make implant placement challenging. Socket preservation techniques are advocated postextraction to maintain the bone's vertical and horizontal alveolar bone dimensions and prevent its atrophy. Aim: This review is oriented toward a clinician, describing the different materials and techniques in practice today for socket preservation. Review results: A variety of methods have been studied as a means to stop alveolar ridge resorption. While immediate implant placement was recommended as a socket preservation technique, clinical trials have not demonstrated favorable results. The main techniques favored by clinicians today involve bone grafts, bone substitutes, barrier membranes, and combinations thereof. As with periodontal defects, these materials show favorable outcomes in alveolar bone regeneration and ridge preservation. Tooth bone grafts, both autogenous and allogenous, have been recommended recently for ridge preservation as they are chemically similar to bone and can induce osteogenesis. The use of autologous platelet concentrates has yielded contradictory results in studies. Cutting-edge approaches entail using growth factors and tissue engineering concepts. While these strategies are still in the development stages, it has peerless potential in preserving and regenerating alveolar bone. Conclusion: Alveolar ridge resorption is an unavoidable physiological process after extraction and leads to severe bone deficiencies, affecting esthetics. These changes in alveolar ridge dimensions make implant placement difficult and affect the longevity of the implant. Clinical intervention can prevent alveolar bone resorption and preserve the ridge. Bone grafts and substitutes including concentrates remain the best choices in ride preservation. The use of growth factors and tissue engineering concepts requires further clinical trials before widespread use in clinical practice.

PDF Share
  1. Saffar JL, Lasfargues JJ, Cherruau M. Alveolar bone and the alveolar process: the socket that is never stable. Periodontol 2000 1997;13(1):76–90. DOI: 10.1111/j.1600-0757.1997.tb00096.x.
  2. Araújo MG, Lindhe J. Dimensional ridge alterations following tooth extraction. An experimental study in the dog. J Clin Periodontol 2005;32(2):212–218. DOI: 10.1111/j.1600-051X.2005.00642.x.
  3. Kassim B, Ivanovski S, Mattheos N. Current perspectives on the role of ridge (socket) preservation procedures in dental implant treatment in the aesthetic zone. Aust Dent J 2014;59(1):48–56. DOI: 10.1111/adj.12098.
  4. Tan WL, Wong TLT, Wong MCM, et al. A systematic review of post-extractional alveolar hard and soft tissue dimensional changes in humans. Clin Oral Implants Res 2012;23(Suppl 5):1–21. DOI: 10.1111/j.1600-0501.2011.02375.x.
  5. Hämmerle CHF, Araújo MG, Simion M. Evidence-based knowledge on the biology and treatment of extraction sockets. Clin Oral Implants Res 2012;23(Suppl 5):80–82. DOI: 10.1111/j.1600-0501.2011.02370.x.
  6. Cardaropoli G, Araújo M, Lindhe J. Dynamics of bone tissue formation in tooth extraction sites: an experimental study in dogs. J Clin Periodontol 2003;30(9):809–818. DOI: 10.1034/j.1600-051X.2003.00366.x.
  7. Amler MH. The time sequence of tissue regeneration in human extraction wounds. Oral Surg Oral Med Oral Pathol 1969;27(3): 309–318. DOI: 10.1016/0030-4220(69)90357-0.
  8. Schropp L, Wenzel A, Kostopoulos L, et al. Bone healing and soft tissue contour changes following single-tooth extraction: a clinical and radiographic 12-month prospective study. Int J Periodontics Restorative Dent 2003;23(4):313. PMID: 12956475.
  9. Fickl S, Zuhr O, Wachtel H, et al. Tissue alterations after tooth extraction with and without surgical trauma: a volumetric study in the beagle dog. J Clin Periodontol 2008;35(4):356–363. DOI: 10.1111/j.1600-051X.2008.01209.x.
  10. Pranskunas M, Galindo-Moreno P, Padial-Molina M. Extraction socket preservation using growth factors and stem cells: a systematic review. J Oral Maxillofac Res 2019;10(3):e7. DOI: 10.5037/jomr.2019.10307.
  11. Becker W. Immediate implant placement: diagnosis, treatment planning and treatment steps/or successful outcomes. J Calif Dent Assoc 2005;33(4):303–310. PMID: 15915881.
  12. Paolantonio M, Dolci M, Scarano A, et al. Immediate Implantation in Fresh Extraction Sockets. A Controlled Clinical and Histological Study in Man. J Periodontol 2001;72(11):1560–1571. DOI: 10.1902/jop.2001.72.11.1560.
  13. Araújo MG, Sukekava F, Wennström JL, et al. Ridge alterations following implant placement in fresh extraction sockets: an experimental study in the dog. J Clin Periodontol 2005;32(6):645–652. DOI: 10.1111/j.1600-051X.2005.00726.x.
  14. Araújo MG, Sukekava F, Wennström JL, et al. Tissue modeling following implant placement in fresh extraction sockets. Clin Oral Implants Res 2006;17(6):615–624. DOI: 10.1111/j.1600-0501.2006.01317.x.
  15. Botticelli D, Berglundh T, Lindhe J. Hard-tissue alterations following immediate implant placement in extraction sites. J Clin Periodontol 2004;31(10):820–828. DOI: 10.1111/j.1600-051X.2004.00565.x.
  16. Blanco J, Liñares A, Pérez J, et al. Ridge alterations following flapless immediate implant placement with or without immediate loading. Part II: a histometric study in the Beagle dog. J Clin Periodontol 2011;38(8):762–770. DOI: 10.1111/j.1600-051X.2011.01747.x.
  17. Wang W, Yeung KWK. Bone grafts and biomaterials substitutes for bone defect repair: a review. Bioact Mater 2017;2(4):224–247. DOI: 10.1016/j.bioactmat.2017.05.007.
  18. Brunsvold MA, Mellonig JT. Bone grafts and periodontal regeneration. Periodontol 2000 1993;1(1):80–91. DOI: 10.1111/j.1600-0757.1993.tb00209.x.
  19. Iviglia G, Kargozar S, Baino F. Biomaterials, current strategies, and novel nano-technological approaches for periodontal regeneration. J Funct Biomater 2019;10(1). DOI: 10.3390/jfb10010003.
  20. Nasr HF, Aichelmann-Reidy ME, Yukna RA. Bone and bone substitutes. Periodontol 2000 1999;19(1):74–86. DOI: 10.1111/j.1600-0757.1999.tb00148.x.
  21. AlGhamdi AS, Shibly O, Ciancio SG. Osseous grafting part II: xenografts and alloplasts for periodontal regeneration–a literature review. J Int Acad Periodontol 2010;12(2):39–44. PMID: 20465030.
  22. Boix D, Weiss P, Gauthier O, et al. Injectable bone substitute to preserve alveolar ridge resorption after tooth extraction: a study in dog. J Mater Sci Mater Med 2006;17:1145–1152. DOI: 10.1007/s10856-006-0542-7.
  23. Wood RA, Mealey BL. Histologic comparison of healing after tooth extraction with ridge preservation using mineralized versus demineralized freeze-dried bone allograft. J Periodontol 2012;83(3):329–336. DOI: 10.1902/jop.2011.110270.
  24. Araújo MG, Lindhe J. Ridge preservation with the use of Bio-Oss® collagen: a 6-month study in the dog. Clin Oral Implants Res 2009;20(5):433–440. DOI: 10.1111/j.1600-0501.2009.01705.x.
  25. Rothamel D, Schwarz F, Herten M, et al. Dimensional ridge alterations following socket preservation using a nanocrystalline hydroxyapatite paste. A histomorphometrical study in dogs. Int J Oral Maxillofac Surg 2008;37(8):741–747. DOI: 10.1016/j.ijom.2008.04.017.
  26. Froum S, Cho S, Rosenberg E, et al. Histological comparison of healing extraction sockets implanted with bioactive glass or demineralized freeze-dried bone allograft: a pilot study. J Periodontol 2002;73(1): 94–102. DOI: 10.1902/jop.2002.73.1.94.
  27. Guarnieri R, Pecora G, Fini M, et al. Medical grade calcium sulfate hemihydrate in healing of human extraction sockets: clinical and histological observations at 3 months. J Periodontol 2004;75(6): 902–908. DOI: 10.1902/jop.2004.75.6.902.
  28. Melcher AH. On the repair potential of periodontal tissues. J Periodontol 1976;47(5):256–260. DOI: 10.1902/jop.1976.47.5.256.
  29. Nyman S, Lindhe J, Karring T, et al. New attachment following surgical treatment of human periodontal disease. J Clin Periodontol 1982;9(4):290–296. DOI: 10.1111/j.1600-051X.1982.tb02095.x.
  30. Retzepi M, Donos N. Guided bone regeneration: biological principle and therapeutic applications. Clin Oral Implants Res 2010;21(6): 567–576. DOI: 10.1111/j.1600-0501.2010.01922.x.
  31. Rodriguez IA, Selders GS, Fetz AE, et al. Barrier membranes for dental applications: a review and sweet advancement in membrane developments. Mouth Teeth 2018;2(1):1–9. DOI: 10.15761/mtj.1000108.
  32. Sam G, Pillai BRM. Evolution of barrier membranes in periodontal regeneration-“Are the third generation membranes really here?” J Clin diagnostic Res 2014;8(12):ZE14. DOI: 10.7860/JCDR/2014/9957.5272.
  33. Lekovic V, Kenney EB, Weinlaender M, et al. A bone regenerative approach to alveolar ridge maintenance following tooth extraction. Report of 10 cases. J Periodontol 1997;68(6):563–570. DOI: 10.1902/jop.1997.68.6.563.
  34. Lekovic V, Camargo PM, Klokkevold PR, et al. Preservation of alveolar bone in extraction sockets using bioabsorbable membranes. J Periodontol 1998;69(9):1044–1049. DOI: 10.1902/jop.1998.69.9.1044.
  35. Sculean A, Nikolidakis D, Schwarz F. Regeneration of periodontal tissues: combinations of barrier membranes and grafting materials–biological foundation and preclinical evidence: a systematic review. J Clin Periodontol 2008;35(8):106–116. DOI: 10.1111/j.1600-051X.2008.01263.x.
  36. Pinho MN, Roriz VM, Novaes AB, et al. Titanium membranes in prevention of alveolar collapse after tooth extraction. Implant Dent 2006;15(1):53–61. DOI: 10.1097/
  37. Luczyszyn SM, Papalexiou V, Novaes AB, et al. Acellular dermal matrix and hydroxyapatite in prevention of ridge deformities after tooth extraction. Implant Dent 2005;14(2):176–184. DOI: 10.1097/
  38. Iasella JM, Greenwell H, Miller RL, et al. Ridge Preservation with freeze-dried bone allograft and a collagen membrane compared to extraction alone for implant site development: a clinical and histologic study in humans. J Periodontol 2003;74(7):990–999. DOI: 10.1902/jop.2003.74.7.990.
  39. Fugazzotto PA. GBR using bovine bone matrix and resorbable and nonresorbable membranes. Part 1: histologic results. Int J Periodontics Restorative Dent 2003;23(4):361. PMID: 12956480.
  40. Fugazzotto PA. GBR using bovine bone matrix and resorbable and nonresorbable membranes. Part 2: Clinical results. Int J Periodontics Restorative Dent 2003;23(6):599–605. DOI: 10.11607/prd.00.0551.
  41. Zubillaga G, Hagen SV, Simon BI, et al. Changes in alveolar bone height and width following post-extraction ridge augmentation using a fixed bioabsorbable membrane and demineralized freeze-dried bone osteoinductive graft. J Periodontol 2003;74(7):965–975. DOI: 10.1902/jop.2003.74.7.965.
  42. Yeomans JD, Urist MR. Bone induction by decalcified dentine implanted into oral, osseous and muscle tissues. Arch Oral Biol 1967;12(8):999–1008. DOI: 10.1016/0003-9969(67)90095-7.
  43. Bang G, Urist MR. Bone induction in excavation chambers in matrix of decalcified dentin. Arch Surg 1967;94(6):781–789. DOI: 10.1001/archsurg.1967.01330120035008.
  44. Gual-Vaqués P, Polis-Yanes C, Estrugo-Devesa A, et al. Autogenous teeth used for bone grafting: a systematic review. Med Oral Patol Oral y Cir Bucal 2018;23(1):e112–e119. DOI: 10.4317/medoral.22197.
  45. Cenicante J, Botelho J, Machado V, et al. The use of autogenous teeth for alveolar ridge preservation: a literature review. Appl Sci 2021;11(4):1–13. DOI: 10.3390/app11041853.
  46. Kim YK, Kim SG, Yun PY, et al. Autogenous teeth used for bone grafting: a comparison with traditional grafting materials. Oral Surg Oral Med Oral Pathol Oral Radiol 2014;117(1):e39–e45. DOI: 10.1016/j.oooo.2012.04.018.
  47. Park S-M, Um I-W, Kim Y-K, et al. Clinical application of auto-tooth bone graft material. J Korean Assoc Oral Maxillofac Surg 2012;38(1):2. DOI: 10.5125/jkaoms.2012.38.1.2.
  48. Koga T, Minamizato T, Kawai Y, et al. Bone regeneration using dentin matrix depends on the degree of demineralization and particle size. PLoS One 2016;11(1):e0147235. DOI: 10.1371/journal.pone.0147235.
  49. Minamizato T, Koga T, Takashi I, et al. Clinical application of autogenous partially demineralized dentin matrix prepared immediately after extraction for alveolar bone regeneration in implant dentistry: a pilot study. Int J Oral Maxillofac Surg 2018;47(1):125–132. DOI: 10.1016/j.ijom.2017.02.1279.
  50. Um IW, Kim YK, Park JC, et al. Clinical application of autogenous demineralized dentin matrix loaded with recombinant human bone morphogenetic-2 for socket preservation: a case series. Clin Implant Dent Relat Res 2019;21(1):4–10. DOI: 10.1111/cid.12710.
  51. Um IW, Ku JK, Kim YM, et al. Allogeneic demineralized dentin matrix graft for guided bone regeneration in dental implants. Appl Sci 2020;10(13):4661. DOI: 10.3390/app10134661.
  52. Kim YK, Bang KM, Murata M, et al. Retrospective clinical study of allogenic demineralized dentin matrix for alveolar bone repair. J Hard Tissue Biol 2017;26(1):95–102. DOI: 10.2485/jhtb.26.95.
  53. Dohan Ehrenfest DM, Rasmusson L, Albrektsson T. Classification of platelet concentrates: from pure platelet-rich plasma (P-PRP) to leucocyte- and platelet-rich fibrin (L-PRF). Trends Biotechnol 2009;27(3):158–167. DOI: 10.1016/j.tibtech.2008.11.009.
  54. Chou T-M, Chang H-P, Wang J-C. Autologous platelet concentrates in maxillofacial regenerative therapy. Kaohsiung J Med Sci 2020;36(5):305–310. DOI: 10.1002/kjm2.12192.
  55. Kumar A, Mahendra J, Mahendra L, et al. Synergistic effect of biphasic calcium phosphate and platelet-rich fibrin attenuate markers for inflammation and osteoclast differentiation by suppressing nf-κb/mapk signaling pathway in chronic periodontitis. Molecules 2021;26(21). DOI: 10.3390/molecules26216578.
  56. Moraschini V, Barboza ESP. Effect of autologous platelet concentrates for alveolar socket preservation: a systematic review. Int J Oral Maxillofac Surg 2015;44(5):632–641. DOI: 10.1016/j.ijom.2014.12.010.
  57. Annunziata M, Guida L, Nastri L, et al. The role of autologous platelet concentrates in alveolar socket preservation: a systematic review. Transfus Med Hemother 2018;45(3):195–203. DOI: 10.1159/000488061.
  58. Alissa R, Esposito M, Horner K, et al. The influence of platelet-rich plasma on the healing of extraction sockets: an explorative randomised clinical trial. Eur J Oral Implantol 2010;3(2):121. PMID: 20623037.
  59. Hauser F, Gaydarov N, Badoud I, et al. Clinical and histological evaluation of post-extraction platelet-rich fibrin socket filling: a prospective randomized controlled study. Bone 2012;50:S113. DOI: 10.1016/j.bone.2012.02.348.
  60. Farina R, Bressan E, Taut A, et al. Plasma rich in growth factors in human extraction sockets: a radiographic and histomorphometric study on early bone deposition. Clin Oral Implants Res 2013;24(12):1360–1368. DOI: 10.1111/clr.12033.
  61. Suttapreyasri S, Leepong N. Influence of platelet-rich fibrin on alveolar ridge preservation. J Craniofac Surg 2013;24(4):1088–1094. DOI: 10.1097/SCS.0b013e31828b6dc3.
  62. Smith PC, Martínez C, Cáceres M, et al. Research on growth factors in periodontology. Periodontol 2000 2015;67(1):234–250. DOI: 10.1111/prd.12068.
  63. Darby IB, Morris KH. A systematic review of the use of growth factors in human periodontal regeneration. J Periodontol 2013;84(4):465–476. DOI: 10.1902/jop.2012.120145.
  64. Darby I. Periodontal materials. Aust Dent J 2011;56(Suppl 1):107–118. DOI: 10.1111/j.1834-7819.2010.01301.x.
  65. King GN. New regenerative technologies: rationale and potential for periodontal regeneration: 2. Growth factors. Dent Update 2001;28(2):60–65. DOI: 10.12968/denu.2001.28.2.60.
  66. Coomes AM, Mealey BL, Huynh-Ba G, et al. Buccal bone formation after flapless extraction: a randomized, controlled clinical trial comparing recombinant human bone morphogenetic protein 2/absorbable collagen carrier and collagen sponge alone. J Periodontol 2014;85(4):525–535. DOI: 10.1902/jop.2013.130207.
  67. Huh J-B, Lee H-J, Jang J-W, et al. Randomized clinical trial on the efficacy of Escherichia coli-derived rhBMP-2 with β-TCP/HA in extraction socket. J Adv Prosthodont 2011;3(3):161–165. DOI: 10.4047/jap.2011.3.3.161.
  68. Geurs N, Ntounis A, Vassilopoulos P, et al. Using growth factors in human extraction sockets: a histologic and histomorphometric evaluation of short-term healing. Int J Oral Maxillofac Implants 2014;29(2):485–496. DOI: 10.11607/jomi.3408.
  69. O'brien FJ. Biomaterials & scaffolds for tissue engineering. Mater Today 2011;14(3):88–95. DOI: 10.1016/S1369-7021(11)70058-X.
  70. Alison MR, Poulsom R, Forbes S, et al. An introduction to stem cells. J Pathol A J Pathol Soc Gt Britain Irel 2002;197(4):419–423. DOI: 10.1002/path.1187.
  71. Yamada Y, Nakamura S, Ito K, et al. Injectable bone tissue engineering using expanded mesenchymal stem cells. Stem Cells 2013;31(3): 572–580. DOI: 10.1002/stem.1300.
  72. Mashimo T, Sato Y, Akita D, et al. Bone marrow-derived mesenchymal stem cells enhance bone marrow regeneration in dental extraction sockets. J Oral Sci 2019;61(2):284–293. DOI: 10.2334/josnusd.18-0143.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.