The Journal of Contemporary Dental Practice

Register      Login



Volume / Issue

Online First

Related articles

VOLUME 23 , ISSUE 4 ( April, 2022 ) > List of Articles


Portraiture and Double Bond Conversion of a Monomethacrylate-based Oral Prosthetic Resin Substituted with a Novel Tri(azine-acrylate) Cross-linker

Ranganathan Ajay, Thillaigovindan Ranjani, Arul Queenalice, Sengottaiyan Vinothkumar, Paulpandian Saravanadinesh

Keywords : Antimicrobial, Comonomer, Conversion, Denture base, Triazine

Citation Information : Ajay R, Ranjani T, Queenalice A, Vinothkumar S, Saravanadinesh P. Portraiture and Double Bond Conversion of a Monomethacrylate-based Oral Prosthetic Resin Substituted with a Novel Tri(azine-acrylate) Cross-linker. J Contemp Dent Pract 2022; 23 (4):425-430.

DOI: 10.5005/jp-journals-10024-3287

License: CC BY-NC 4.0

Published Online: 11-07-2022

Copyright Statement:  Copyright © 2022; The Author(s).


Aim: To formulate, design, and chemically characterize a novel denture base resin (DBR) copolymer containing triazine-based antimicrobial comonomer and also to evaluate the double bond conversion (DC) in the copolymer with various concentrations of the comonomer by fourier transform infrared (FTIR) spectroscopy. Materials and methods: The study groups comprise a control group G0 in which the specimens (n = 10) were polymerized without the triazine comonomer and trial groups G10 and G20 where the polymerized specimens (n = 10 each) contained 10 and 20% triazine comonomer, respectively. FTIR was employed to ascertain and evaluate copolymerization (CP) and DC. The obtained DC values were subjected to statistical analysis. Results: A new denture base copolymer containing antimicrobial triazine comonomer was formed with ascertained copolymerization and higher DC than the control group. Twenty percent triazine comonomer in the copolymer exhibited the maximum DC. Conclusion: Incorporation of the antimicrobial comonomer copolymerized with DBR to form a novel denture base copolymer exhibiting high DC. Clinical significance: The novel denture base copolymer may prevent the microbial adhesion on the denture surface thereby preventing denture-induced stomatitis in the edentulous patients. Nonetheless, this novel copolymer may enhance the other necessary properties of the DBR and would ameliorate the living quality of the senile geriatric population with good in vivo serviceability.

PDF Share
  1. Raj PA, Dentino AR. New phosphated poly(methyl methacrylate) polymers for the prevention of denture-induced microbial infection: an in vitro study. Clin Cosmet Investig Dent 2011;3:25–32. DOI: 10.2147/CCIDEN.S16860.
  2. Paleari AG, Marra J, Pero AC, et al. Effect of incorporation of 2-tert-butylaminoethyl methacrylate on flexural strength of a denture base acrylic resin. J Appl Oral Sci 2011;19(3):195–199. DOI: 10.1590/s1678-77572011000300003.
  3. Compagnoni MA, Pero AC, Ramos SM, et al. Antimicrobial activity and surface properties of an acrylic resin containing a biocide polymer. Gerodontology 2014;31(3):220–226. DOI: 10.1111/ger.12031.
  4. Valentini F, Luz MS, Boscato N, et al. Biofilm formation on denture liners in a randomised controlled in situ trial. J Dent 2013;41(5): 420–427. DOI: 10.1016/j.jdent.2013.02.012.
  5. Wady AF, Machado AL, Zucolotto V, et al. Evaluation of Candida albicans adhesion and biofilm formation on a denture base acrylic resin containing silver nanoparticles. J Appl Microbiol 2012;112(6):1163–1172. DOI: 10.1111/j.1365-2672.2012.05293.x.
  6. Coulthwaite L, Verran J. Potential pathogenic aspects of denture plaque. Br J Biomed Sci 2007;64(4):180–189. DOI: 10.1080/0967 4845.2007.11732784.
  7. Taylor GW, Loesche WJ, Terpenning MS. Impact of oral diseases on systemic health in the elderly: diabetes mellitus and aspiration pneumonia. J Public Health Dent 2000;60(4):313–320. DOI: 10.1111/j.1752-7325.2000.tb03341.x.
  8. Parahitiyawa NB, Jin LJ, Leung WK, et al. Microbiology of odontogenic bacteremia: beyond endocarditis. Clin Microbiol Rev 2009;22(1): 46–64. DOI: 10.1128/CMR.00028-08.
  9. Li L, Finnegan MB, Özkan S, et al. In vitro study of biofilm formation and effectiveness of antimicrobial treatment on various dental material surfaces. Mol Oral Microbiol 2010;25(6):384–390. DOI: 10.1111/j.2041-1014.2010.00586.x.
  10. Mirizadeh A, Atai M, Ebrahimi S. Fabrication of denture base materials with antimicrobial properties. J Prosthet Dent 2018;119(2):292–298. DOI: 10.1016/j.prosdent.2017.03.011.
  11. Akpan A, Morgan R. Oral candidiasis. Postgrad Med J 2002;78(922): 455–459. DOI: 10.1136/pmj.78.922.455.
  12. Pereira-Cenci T, Del Bel Cury AA, Crielaard W, et al. Development of Candida-associated denture stomatitis: new insights. J Appl Oral Sci 2008;16(2):86–94. DOI: 10.1590/s1678-77572008000200002.
  13. Arendorf TM, Walker DM. Denture stomatitis: a review. J Oral Rehabil 1987;14(3):217–227. DOI: 10.1111/j.1365-2842.1987.tb00713.x.
  14. Kiesow A, Sarembe S, Pizzey RL, et al. Material compatibility and antimicrobial activity of consumer products commonly used to clean dentures. J Prosthet Dent 2016;115(2):189–198.e8. DOI: 10.1016/j.prosdent.2015.08.010.
  15. Bueno MG, Urban VM, Barbério GS, et al. Effect of antimicrobial agents incorporated into resilient denture relines on the Candida albicans biofilm. Oral Dis 2015;21(1):57–65. DOI: 10.1111/odi.12207.
  16. Pietrokovski Y, Nisimov I, Kesler-Shvero D, et al. Antibacterial effect of composite resin foundation material incorporating quaternary ammonium polyethyleneimine nanoparticles. J Prosthet Dent 2016;116(4):603–609. DOI: 10.1016/j.prosdent.2016.02.022.
  17. Gozzelino G, Lisanti C, Beneventi S. Quaternary ammonium monomers for UV crosslinked antibacterial surfaces. Colloids Surf A Physicochem Eng Asp 2013;430:21–28. DOI: 10.1016/j.colsurfa.2013.03.061.
  18. Nam KY, Lee CH, Lee CJ. Antifungal and physical characteristics of modified denture base acrylic incorporated with silver nanoparticles. Gerodontology 2012;29(2):e413–e419. DOI: 10.1111/j.1741-2358.2011.00489.x.
  19. Monteiro DR, Gorup LF, Takamiya AS, et al. Silver distribution and release from an antimicrobial denture base resin containing silver colloidal nanoparticles. J Prosthodont 2012;21(1):7–15. DOI: 10.1111/j.1532-849X.2011.00772.x.
  20. Song R, Jiao X, Lin L. Improvement of mechanical and antimicrobial properties of denture base resin by nano-titanium dioxide and nano-silicon dioxide particles. Pigment Resin Technol 2011;40:393–398. DOI: 10.1108/03699421111180545.
  21. Pesci-Bardon C, Fosse T, Madinier I, et al. In vitro new dialysis protocol to assay the antiseptic properties of a quaternary ammonium compound polymerized with denture acrylic resin. Lett Appl Microbiol 2004;39(3):226–231. DOI: 10.1111/j.1472-765X.2004.01569.x.
  22. Puri G, Berzins DW, Dhuru VB, et al. Effect of phosphate group addition on the properties of denture base resins. J Prosthet Dent 2008;100(4):302–308. DOI: 10.1016/S0022-3913(08)60210-3.
  23. Regis RR, Zanini AP, Della Vecchia MP, et al. Physical properties of an acrylic resin after incorporation of an antimicrobial monomer. J Prosthodont 2011;20(5):372–379. DOI: 10.1111/j.1532-849X.2011.00719.x.
  24. Bertolini MM, Portela MB, Curvelo JA, et al. Resins-based denture soft lining materials modified by chlorhexidine salt incorporation: an in vitro analysis of antifungal activity, drug release and hardness. Dent Mater 2014;30(8):793–798. DOI: 10.1016/
  25. De Prijck K, De Smet N, Coenye T, et al. Prevention of Candida albicans biofilm formation by covalently bound dimethylamino ethyl methacrylate and polyethylenimine. Mycopathologia 2010;170(4):213–221. DOI: 10.1007/s11046-010-9316-3.
  26. Bhat HR, Singh UP, Thakur A, et al. Synthesis, antimalarial activity and molecular docking of hybrid 4-aminoquinoline-1,3,5-triazine derivatives. Exp Parasitol 2015;157:59–67. DOI: 10.1016/j.exppara.2015.06.016.
  27. Singh B, Bhat HR, Kumawat MK, et al. Structure-guided discovery of 1,3,5-triazine-pyrazole conjugates as antibacterial and antibiofilm agent against pathogens causing human diseases with favorable metabolic fate. Bioorg Med Chem Lett 2014;24(15):3321–3325. DOI: 10.1016/j.bmcl.2014.05.103.
  28. Zhou C, Min J, Liu Z, et al. Synthesis and biological evaluation of novel 1,3,5-triazine derivatives as antimicrobial agents. Bioorg Med Chem Lett 2008;18(4):1308–1311. DOI: 10.1016/j.bmcl.2008.01.031.
  29. Altmann AS, Collares FM, Ogliari FA, et al. Effect of methacrylated-based antibacterial monomer on orthodontic adhesive system properties. Am J Orthod Dentofacial Orthop 2015;147(4 Suppl): S82–S87. DOI: 10.1016/j.ajodo.2015.01.015.
  30. Rodriguez LS, Paleari AG, Giro G, et al. Chemical characterization and flexural strength of a denture base acrylic resin with monomer 2-tert-butylaminoethyl methacrylate. J Prosthodont 2013;22(4):292–297. DOI: 10.1111/j.1532-849X.2012.00942.x.
  31. Nomoto R, Asada M, McCabe JF, et al. Light exposure required for optimum conversion of light activated resin systems. Dent Mater 2006;22(12):1135–1142. DOI: 10.1016/
  32. Ajay R, Suma K, Ali SA. Monomer modifications of denture base acrylic resin: a systematic review and meta-analysis. J Pharm Bioallied Sci 2019;11(Suppl. 2):S112–S125. DOI: 10.4103/JPBS.JPBS_34_19.
  33. Stawski D, Nowak A. Thermal properties of poly(N,N-dimethylaminoethyl methacrylate). PLoS One 2019;14(6):e0217441. DOI: 10.1371/journal.pone.0217441.
  34. Schiroky PR, Leitune VCB, Garcia IM, et al. Triazine compound as copolymerized antibacterial agent in adhesive resins. Braz Dent J 2017;28(2):196–200. DOI: 10.1590/0103-6440201701346.
  35. Altmann AS, Collares FM, Leitune VC, et al. In vitro antibacterial and remineralizing effect of adhesive containing triazine and niobium pentoxide phosphate inverted glass. Clin Oral Investig 2017;21(1): 93–103. DOI: 10.1007/s00784-016-1754-y.
  36. Miyazaki K, Horibe T. Polymerization of multifunctional methacrylates and acrylates. J Biomed Mater Res 1988;22(11):1011–1022. DOI: 10.1002/jbm.820221105.
  37. Ajay R, Suma K, Jaya Krishna Kumar S, et al. Chemical Characterization of Denture Base Resin with a Novel Cycloaliphatic Monomer. J Contemp Dent Pract 2019;20(8):940–946. DOI: 10.5005/jp-journals-10024-2634.
  38. Ajay R, Suma K, Sasikala R, et al. Chemical structure and physical properties of heat-cured poly(methyl methacrylate) resin processed with cycloaliphatic comonomer: an in vitro study. J Contemp Dent Pract 2020;21(3):285–290. DOI: 10.5005/jp-journals-10024-2769.
  39. Anusavice KJ. Phillips’ science of dental materials. 11th ed. Missouri: Elsevier-Saunders; 2010. p. 152.
  40. Santerre JP, Shajii L, Leung BW. Relation of dental composite formulations to their degradation and the release of hydrolyzed polymeric-resin-derived products. Crit Rev Oral Biol Med 2001;12(2):136–151. DOI: 10.1177/10454411010120020401.
  41. Lovell LG, Newman SM, Bowman CN. The effects of light intensity, temperature, and comonomer composition on the polymerization behavior of dimethacrylate dental resins. J Dent Res 1999;78(8): 1469–1476. DOI: 10.1177/00220345990780081301.
  42. Witzel MF, Calheiros FC, Gonçalves F, et al. Influence of photoactivation method on conversion, mechanical properties, degradation in ethanol and contraction stress of resin-based materials. J Dent 2005;33(9):773–779. DOI: 10.1016/j.jdent.2005.02.005.
  43. Kloukos D, Pandis N, Eliades T. Bisphenol-A and residual monomer leaching from orthodontic adhesive resins and polycarbonate brackets: a systematic review. Am J Orthod Dentofacial Orthop 2013;143:S104–S112. DOI: 10.1016/j.ajodo.2012.11.015.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.