The Journal of Contemporary Dental Practice

Register      Login



Volume / Issue

Online First

Related articles

VOLUME 23 , ISSUE 4 ( April, 2022 ) > List of Articles


Silk Hydrogel for Tissue Engineering: A Review

Kranti Kiran Reddy Ealla, Nikitha Reddy Ravula, Chandra Sri Durga, Vikas Sahu, Praveen Kumar Poola

Keywords : Biomaterial, Scaffolds, Silk fibroin, Tissue engineering

Citation Information : Ealla KK, Ravula NR, Durga CS, Sahu V, Poola PK. Silk Hydrogel for Tissue Engineering: A Review. J Contemp Dent Pract 2022; 23 (4):467-477.

DOI: 10.5005/jp-journals-10024-3322

License: CC BY-NC 4.0

Published Online: 11-07-2022

Copyright Statement:  Copyright © 2022; The Author(s).


Aim: This review aims to explore the importance of silk hydrogel and its potential in tissue engineering (TE). Background: Tissue engineering is a procedure that incorporates cells into the scaffold materials with suitable growth factors to regenerate injured tissue. For tissue formation in TE, the scaffold material plays a key role. Different forms of silk fibroin (SF), such as films, mats, hydrogels, and sponges, can be easily manufactured when SF is disintegrated into an aqueous solution. High precision procedures such as micropatterning and bioprinting of SF-based scaffolds have been used for enhanced fabrication. Review results: In this narrative review, SF physicochemical and mechanical properties have been presented. We have also discussed SF fabrication techniques like electrospinning, spin coating, freeze-drying, and physiochemical cross-linking. The application of SF-based scaffolds for skeletal, tissue, joint, muscle, epidermal, tissue repair, and tympanic membrane regeneration has also been addressed. Conclusion: SF has excellent mechanical properties, tunability, biodegradability, biocompatibility, and bioresorbability. Clinical significance: Silk hydrogels are an ideal scaffold matrix material that will significantly impact tissue engineering applications, given the rapid scientific advancements in this field.

PDF Share
  1. Ma D, Wang Y, Dai W. Silk fibroin-based biomaterials for musculoskeletal tissue engineering. Mater Sci Eng C Mater Biol Appl 2018;89:456–469. DOI: 10.1016/j.msec.2018.04.062.
  2. Singh D, Harding AJ, Albadawi E, et al. Additive manufactured biodegradable poly (glycerol sebacate methacrylate) nerve guidance conduits. Acta Biomater 2018;78:48–63. DOI: 10.1016/j.actbio.2018.07.055.
  3. Cheng G, Davoudi, Z Xing X, et al. Advanced silk fibroin biomaterials for cartilage regeneration. ACS Biomater Sci Eng 2018;4:2704–2715. DOI: 10.1021/acsbiomaterials.8b00150.
  4. Venkatesan J, Bhatnagar I, Manivasagan P, et al. Alginate composites for bone tissue engineering: a review. Int J Biol Macromol 2015;72:269–281. DOI: 10.1016/j.ijbiomac.2014.07.008.
  5. Gui L, Niklason LE. Vascular tissue engineering: building perfusable vasculature for implantation. Curr Opin Chem Eng 2014;3:68–74. DOI: 10.1016/j.coche.2013.11.004.
  6. O'Brien FJ. Biomaterials & scaffolds for tissue engineering. Mater Today 2011;14(3):88–95. DOI: 10.1016/s1369-7021(11)70058-x.
  7. Howard D, Buttery LD, Shakesheff KM, et al. Tissue engineering: strategies, stem cells and scaffolds. J Anat 2008;213(1):66–72. DOI: 10.1111/j.1469-7580.2008.00878.x.
  8. Dhar P, Fischer TM, Wang Y, et al. Autonomously moving nanorods at a viscous interface. Nano Lett 2006;6(1):66–72. DOI: 10.1021/nl052027s.
  9. Brown BN, Badylak SF. Extracellular matrix as an inductive scaffold for functional tissue reconstruction. Transl Res 2014;163(4):268–285. DOI: 10.1016/j.trsl.2013.11.003.
  10. Glowacki J, Mizuno S. Collagen scaffolds for tissue engineering. Biopolymers 2008;89(5):338–344. DOI: 10.1002/bip.20871.
  11. Koide A, Bailey CW, Huang X, et al. The fibronectin type III domain as a scaffold for novel binding proteins. J Mol Biol 1998;284(4):1141–1151. DOI: 10.1006/jmbi.1998.2238.
  12. Tate CC, Shear DA, Tate MC, et al. Laminin and fibronectin scaffolds enhance neural stem cell transplantation into the injured brain. J Tissue Eng Regen Med 2009;3(3):208–217. DOI: 10.1002/term.154.
  13. Daamen WF, Veerkamp JH, van Hest JC, et al. Elastin as a biomaterial for tissue engineering. Biomaterials 2007;28(30):4378–4398. DOI: 10.1016/j.biomaterials.2007.06.025.
  14. Farrell E, O'Brien FJ, Doyle P, et al. A collagen-glycosaminoglycan scaffold supports adult rat mesenchymal stem cell differentiation along osteogenic and chondrogenic routes. Tissue Eng 2006;12(3):459–468. DOI: 10.1089/ten.2006.12.459.
  15. Venkatesan J, Bhatnagar I, Kim SK. Chitosan-alginate biocomposite containing fucoidan for bone tissue engineering. Mar Drugs 2014;12(1):300–316. DOI: 10.3390/md12010300.
  16. Hickey RJ, Pelling AE. Cellulose biomaterials for tissue engineering. Front Bioeng Biotechnol 2019;7:45. DOI: 10.3389/fbioe.2019.00045.
  17. Ahsan SM, Thomas M, Reddy KK, et al. Chitosan as biomaterial in drug delivery and tissue engineering. Int J Biol Macromol 2018;110:97–109. DOI: 10.1016/j.ijbiomac.2017.08.140.
  18. Sionkowska A. Current research on the blends of natural and synthetic polymers as New Biomaterials: review. Prog Polym Sci 2011;36(9):1254–1276. DOI: 10.1016/j.progpolymsci.2011.05.003.
  19. Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci 2007;32:762–798. DOI: 10.1016/j.progpolymsci.2007. 05.017.
  20. Gagner JE, Kim W, Chaikof EL. Designing protein-based biomaterials for medical applications. Acta Biomater 2014;10(4):1542–1557. DOI: 10.1016/j.actbio.2013.10.001.
  21. Huang W, Ling S, Li C, et al. Silkworm silk-based materials and devices generated using bio-nanotechnology. Chem Soc Rev 2018;47(17):6486–6504. DOI: 10.1039/c8cs00187a.
  22. Chen F, Porter D, Vollrath F. Morphology and structure of silkworm cocoons. Mater Sci Eng C 2012;32(4):772–778. DOI: 10.1016/j.msec.2012.01.023.
  23. Panilaitis B, Altman GH, Chen J, et al. Macrophage responses to silk. Biomaterials 2003;24(18):3079–3085. DOI: 10.1016/s0142-9612(03)00158-3.
  24. Zhang C, Zhang Y, Shao H, et al. Hybrid silk fibers dry-spun from regenerated silk fibroin/graphene oxide aqueous solutions. ACS Appl Mater Interfaces 2016;8(5):3349–3358. DOI: 10.1021/acsami. 5b11245.
  25. Song W, Muthana M, Mukherjee J, et al. Magnetic-silk core-shell nanoparticles as potential carriers for targeted delivery of curcumin into human breast cancer cells. ACS Biomater Sci Eng 2017;3(6):1027–1038. DOI: 10.1021/acsbiomaterials.7b00153.
  26. Melke J, Midha S, Ghosh S, et al. Silk fibroin as biomaterial for bone tissue engineering. Acta Biomater 2016;31:1–16. DOI: 10.1016/j.actbio.2015.09.005.
  27. Sun W, Zhang Y, Gregory DA, et al. Patterning the neuronal cells via inkjet printing of self-assembled peptides on silk scaffolds. Prog Nat Sci Mater Int 2020;30(5):686–696. DOI: 10.1016/j.pnsc.2020.09.007.
  28. He P, Sahoo S, Ng KS, et al. Enhanced osteoinductivity and osteoconductivity through hydroxyapatite coating of silk-based tissue-engineered ligament scaffold. J Biomed Mater Res A 2013;101(2):555–566. DOI: 10.1002/jbm.a.34333.
  29. Cai ZX, Mo XM, Zhang KH, et al. Fabrication of chitosan/silk fibroin composite nanofibers for wound-dressing applications. Int J Mol Sci 2010;11(9):3529–3539. DOI: 10.3390/ijms11093529.
  30. Wang J, Yang Q, Cheng N, et al. Collagen/silk fibroin composite scaffold incorporated with PLGA microsphere for cartilage repair. Mater Sci Eng C Mater Biol Appl 2016;61:705–711. DOI: 10.1016/j.msec.2015.12.097.
  31. Zhang F, Zuo B, Fan Z, et al. Mechanisms and control of silk-based electrospinning. Biomacromolecules 2012;13(3):798–804. DOI: 10.1021/bm201719s.
  32. Floren M, Migliaresi C, Motta A. Processing techniques and applications of silk hydrogels in bioengineering. J Funct Biomater 2016;7(3):26. DOI: 10.3390/jfb7030026.
  33. Yan LP, Oliveira JM, Oliveira AL, et al. Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications. Acta Biomater 2012;8(1):289–301. DOI: 10.1016/j.actbio.2011.09.037.
  34. Gregory DA, Zhang Y, Smith PJ, et al. Reactive inkjet printing of biocompatible enzyme powered silk micro-rockets. Small 2016;12(30):4048–4055. DOI: 10.1002/smll.201600921.
  35. Craig CL. Evolution of arthropod silks. Annu Rev Entomol 1997;42:231–267. DOI: 10.1146/annurev.ento.42.1.231.
  36. Kundu B, Rajkhowa R, Kundu SC, et al. Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev 2013;65(4):457–470. DOI: 10.1016/j.addr.2012.09.043.
  37. Von Byern J, Chandler P, Merritt D, et al. Biomechanical properties of fishing lines of the glowworm Arachnocampa luminosa (Diptera; Keroplatidae). Sci Rep 2019;9:3082. DOI: 10.1038/s41598-019-39098-1.
  38. Yoshioka T, Tsubota T, Tashiro K, et al. A study of the extraordinarily strong and tough silk produced by bagworms. Nat Commun 2019;10:1469. DOI: 10.1038/s41467-019-09350-3.
  39. Qi Y, Wang H, Wei K, et al. A review of structure construction of silk fibroin biomaterials from single structures to multi-level structures. Int J Mol Sci 2017;18:237. DOI: 10.3390/ijms18030237.
  40. Tomeh MA, Hadianamrei R, Zhao X. Silk fibroin as a functional biomaterial for drug and gene delivery. Pharmaceutics 2019;11(10):494. DOI: 10.3390/pharmaceutics11100494.
  41. Kiseleva AP, Krivoshapkin PV, Krivoshapkina EF. Recent advances in development of functional spider silk-based hybrid materials. Front Chem 2020;8:554. DOI: 10.3389/fchem.2020.00554.
  42. Lewis R. Unraveling the weave of spider silk: one of nature's wondrous chemical structures is being dissected so that it can be used in human inventions. BioScience 1996;46:636–638. DOI: 10.2307/1312891.
  43. Blamires SJ, Spicer PT, Flanagan PJ. Spider silk biomimetics programs to inform the development of New Wearable Technologies. Front Mater 2020;7. DOI: 10.3389/fmats.2020.00029.
  44. Andersson M, Jia Q, Abella A, et al. Biomimetic spinning of artificial spider silk from a chimeric minispidroin. Nat Chem Biol 2017;13(3):262–264. DOI: 10.1038/nchembio.2269.
  45. Hwang JS, Lee JS, Goo TW, et al. The comparative molecular study between Bombycidae and Saturniidae based on mtDNA RFLP and cytochrome oxidase I gene sequences: implication for molecular evolution. Z Naturforsch C J Biosci 1999;54(7-8):587–594. DOI: 10.1515/znc-1999-7-821.
  46. Fang G, Sapru S, Behera S, et al. Exploration of the tight structural-mechanical relationship in mulberry and non-mulberry silkworm silks. J Mater Chem B 2016;4(24):4337–4347. DOI: 10.1039/c6tb01049k.
  47. Kawamoto M, Jouraku A, Toyoda A, et al. High-quality genome assembly of the silkworm, Bombyx mori. Insect Biochem Mol Biol 2019;107:53–62. DOI: 10.1016/j.ibmb.2019.02.002.
  48. Liu B, Song YW, Jin L, et al. Silk structure and degradation. Colloids Surf. B Biointerfaces 2015;131:122–128. DOI: 10.1016/j.colsurfb. 2015.04.040.
  49. Malay AD, Sato R, Yazawa K, et al. Relationships between physical properties and sequence in silkworm silks. Sci Rep 2016;6(1):27573. DOI:10.1038/srep27573.
  50. Vepari C, Kaplan DL. Silk as a Biomaterial. Prog Polym Sci 2007;32(8-9):991–1007. DOI: 10.1016/j.progpolymsci.2007.05.013.
  51. Nguyen TP, Nguyen QV, Nguyen VH, et al. Silk fibroin-based biomaterials for biomedical applications: a review. Polymers (Basel) 2019;11(12):1933. DOI: 10.3390/polym11121933.
  52. Aramwit P, Kanokpanont S, De-Eknamkul W, et al. Monitoring of inflammatory mediators induced by silk sericin. J Biosci Bioeng 2009;107(5):556–561. DOI: 10.1016/j.jbiosc.2008.12.012.
  53. Sahu N, Pal S, Sapru S, et al. Non-mulberry and mulberry silk protein sericins as potential media supplement for animal cell culture. Biomed Res Int 2016;2016:7461041. DOI: 10.1155/2016/7461041.
  54. Chopra S, Gulrajani M. Comparative evaluation of the various methods of degumming silk. Indian J Fibre Text Res 1994;19:76–83.
  55. Dou H, Zuo B. Effect of sodium carbonate concentrations on the degumming and regeneration process of silk fibroin. J Text Inst 2014;106(3):311–319. DOI: 10.1080/00405000.2014.919065.
  56. Shao Z, Vollrath F. Surprising strength of silkworm silk. Nature 2002;418(6899):741. DOI: 10.1038/418741a.
  57. Mori K, Tanaka K, Kikuchi Y, et al. Production of a chimeric fibroin light-chain polypeptide in a fibroin secretion-deficient naked pupa mutant of the silkworm Bombyx mori. J Mol Biol 1995;251:217–228. DOI: 10.1006/jmbi.1995.0429.
  58. Wongpinyochit T, Johnston BF, Seib FP. Degradation behavior of silk nanoparticles—enzyme responsiveness. ACS Biomater Sci Eng 2018;4:942–951. DOI: 10.1021/acsbiomaterials.7b01021.
  59. Tanaka K, Inoue S, Mizuno S. Hydrophobic interaction of P25, containing Asn-linked oligosaccharide chains, with the H-L complex of silk fibroin produced by Bombyx mori. Insect Biochem Mol Biol 1999;29:269–276. DOI: 10.1016/s0965-1748(98)00135-0.
  60. Inoue S, Tanaka K, Arisaka F, et al. Silk fibroin of Bombyx mori is secreted, assembling a high molecular mass elementary unit consisting of H-chain, L-chain, and P25, with a 6:6:1 molar ratio. J Biol Chem 2000;275:40517–40528. DOI: 10.1074/jbc.M006897200.
  61. Zhou CZ, Confalonieri F, Jacquet M, et al. Silk fibroin: structural implications of a remarkable amino acid sequence. Proteins 2001;44(2):119–122. DOI: 10.1002/prot.1078.
  62. Asakura T, Ito T, Okudaira M, et al. Structure of alanine and glycine residues of Samia cynthia ricini silk fibers studied with solid-state 15N and 13C NMR. Macromolecules 1999;32:4940–4946. DOI: 10.1021/ma990442z.
  63. Gage LP, Manning RF. Internal structure of the silk fibroin gene of Bombyx mori. I The fibroin gene consists of a homogeneous alternating array of repetitious crystalline and amorphous coding sequences. J Biol Chem 1980;255:9444–9450.
  64. Fedic R, Zurovec M, Sehnal F. Correlation between fibroin amino acid sequence and physical silk properties. J Biol Chem 2003;278:35255–35264. DOI: 10.1074/jbc.M305304200.
  65. Cho SY, Yun YS, Lee S, et al. Carbonization of a stable-sheet-rich silk protein into a pseudographitic pyroprotein. Nat Commun 2015;6:7145. DOI: 10.1038/ncomms8145.
  66. Cebe P, Partlow BP, Kaplan DL, et al. Silk I and Silk II studied by fast scanning calorimetry. Acta Biomater 2017;55:323–332. DOI: 10.1016/j.actbio.2017.04.001.
  67. Jaramillo-Quiceno N, Álvarez-López C, Restrepo-Osorio A. Structural and thermal properties of silk fibroin films obtained from cocoon and waste silk fibers as raw materials. Procedia Eng 2017;200:384–388. DOI: 10.1016/j.proeng.2017.07.054.
  68. Valluzzi R, Gido SP, Muller W, et al. Orientation of silk III at the air-water interface. Int J Biol Macromol 1999;24(2-3):237–242. DOI: 10.1016/s0141-8130(99)00002-1.
  69. Sirichaisit J, Brookes VL, Young RJ, et al. Analyis of structure/property relationships in silkworm (Bombyx mori) and spider dragline (Nephila edulis) silks using Raman spectroscopy. Biomacromolecules 2003;4(2):387–394. DOI: 10.1021/bm0256956.
  70. Koh LD, Cheng Y, Teng CP, et al. Structures, mechanical properties and applications of silk fibroin materials. Prog Polym Sci 2015;46:86–110. DOI: 10.1016/j.progpolymsci.2015.02.001.
  71. Gosline JM, Guerette PA, Ortlepp CS, et al. The mechanical design of spider silks: from fibroin sequence to mechanical function. J Exp Biol 1999;202(Pt 23):3295–3303. DOI: 10.1242/jeb.202.23.3295.
  72. Altman GH, Horan RL, Lu HH, et al. Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials 2002;23(20):4131–4141. DOI: 10.1016/s0142-9612(02)00156-4.
  73. Nazarov R, Jin HJ, Kaplan DL. Porous 3-D scaffolds from regenerated silk fibroin. Biomacromolecules 2004;5(3):718–726. DOI: 10.1021/bm034327e.
  74. Park TG. Degradation of poly(d,L-lactic acid) microspheres: effect of molecular weight. J Control Release 1994;30(2):161–173. DOI: 10.1016/0168-3659(94)90263-1.
  75. Trefiletti V, Conio G, Pioli F, et al. The spinning of silk, 1: molecular weight, subunit structure, and molecular shape of Bombyx mori fibroin. Makromol Chem 1980;181:1159–1179. DOI: 10.1002/macp.1980.021810601.
  76. Zuo B, Dai L, Wu Z. Analysis of structure and properties of biodegradable regenerated silk fibroin fibers. J Mater Sci 2006;41(11):3357–3361. DOI: 10.1007/s10853-005-5384-z.
  77. Freiberg S, Zhu XX. Polymer microspheres for controlled drug release. Int J Pharm 2004;282(1–2):1–18. DOI: 10.1016/j.ijpharm.2004.04.013.
  78. Asakura T, Kuzuhara A, Tabeta R, et al. Conformational characterization of Bombyx mori silk fibroin in the solid state by high-frequency carbon-13 cross polarization-magic angle spinning NMR, X-ray diffraction, and infrared spectroscopy. Macromolecules 1985;18(10):1841–1845. DOI: 10.1021/ma00152a009.
  79. Monti P, Freddi G, Bertoluzza A, et al. Raman spectroscopic studies of silk fibroin from Bombyx mori. J Raman Spectrosc 1998;29(4): 297–304. DOI: 10.1002/(SICI)1097-4555(199804)29:4<297::AID-JRS240>3.0.CO;2-G.
  80. Marsh RE, Corey RB, Pauling L. An investigation of the structure of silk fibroin. Biochim Biophys Acta 1955;16(1):1–34. DOI: 10.1016/0006-3002(55)90178-5.
  81. Ishida M, Asakura T, Yokoi M, et al. Solvent- and mechanical-treatment-induced conformational transition of silk fibroins studies by high-resolution solid-state carbon-13 NMR spectroscopy. Macromolecules 1990;23(1):88–94. DOI: 10.1021/ma00203a017.
  82. Motta A, Fambri L, Migliaresi C. Regenerated silk fibroin films: thermal and dynamic mechanical analysis. Macromol Chem Phys 2002;203(10–11):1658–1665. DOI: 10.1002/1521-3935(200207)203:10/11<1658::AID-MACP1658>3.0.CO;2-3.
  83. Dicko C, Kenney JM, Knight D, et al. Transition to a beta-sheet-rich structure in spidroin in vitro: the effects of pH and cations. Biochemistry 2004;43(44):14080–14087. DOI: 10.1021/bi0483413.
  84. Zong XH, Zhou P, Shao ZZ, et al. Effect of pH and copper(II) on the conformation transitions of silk fibroin based on EPR, NMR, and Raman spectroscopy. Biochemistry 2004;43(38):11932–11941. DOI: 10.1021/bi049455h.
  85. Kim UJ, Park J, Li C, et al. Structure and properties of silk hydrogels. Biomacromolecules 2004;5(3):786–792. DOI: 10.1021/bm0345460.
  86. Wang X, Wenk E, Matsumoto A, et al. Silk microspheres for encapsulation and controlled release. J Control Release 2007;117(3):360–370. DOI: 10.1016/j.jconrel.2006.11.021.
  87. Jin HJ, Kaplan DL. Mechanism of silk processing in insects and spiders. Nature 2003;424(6952):1057–1061. DOI: 10.1038/nature01809.
  88. Xie F, Zhang H, Shao H, et al. Effect of shearing on formation of silk fibers from regenerated Bombyx mori silk fibroin aqueous solution. Int J Biol Macromol 2006;38(3–5):284–288. DOI: 10.1016/j.ijbiomac.2006.03.021.
  89. Wenk E, Wandrey AJ, Merkle HP, et al. Silk fibroin spheres as a platform for controlled drug delivery. J Control Release 2008;132(1):26–34. DOI: 10.1016/j.jconrel.2008.08.005.
  90. Min BM, Jeong L, Lee KY, et al. Regenerated silk fibroin nanofibers: water vapor-induced structural changes and their effects on the behavior of normal human cells. Macromol Biosci 2006;6(4):285–292. DOI: 10.1002/mabi.200500246.
  91. Nam J, Park YH. Morphology of regenerated silk fibroin: effects of freezing temperature, alcohol addition, and molecular weight. J Appl Polym Sci 2001;81(12):3008–3021. DOI: 10.1002/app.1751.
  92. Li M, Lu S, Wu Z, et al. Study on porous silk fibroin materials. I. Fine structure of freeze dried silk fibroin. J Appl Polym Sci 2001;79(12):2185–2191. DOI: 10.1002/1097-4628(20010321)79:12<2185::AID-APP1026>3.0.CO;2-3.
  93. Jin HJ, Park J, Karageorgiou V, et al. Waterstable silk films with reduced beta-sheet content. Adv Funct Mater 2005;15:1241–1247. DOI: 10.1002/adfm.200400405.
  94. Kaplan DL, Mello CM, Arcidiacono S, et al. Silk. In: Protein-based materials. 1997. p. 103–131. DOI: 10.1007/978-1-4612-4094-5_4.
  95. Phillips DM, Drummy LF, Conrady DG, et al. Dissolution and regeneration of Bombyx mori silk fibroin using ionic liquids, J Am Chem Soc 2004;126(44):14350–14351. DOI: 10.1021/ja046079f.
  96. Nakamura S, Magoshi J, Magoshi Y, et al. Silk polymers: materials science and biotechnology, ACS Symp Ser 1994;544:211–221. DOI: 10.1021/bk-1994-0544.
  97. Peppas NA, Khare AR. Preparation, structure and diffusional behavior of hydrogels in controlled release. Adv Drug Deliv Rev 1993; 11(1–2):1–35. DOI: 10.1016/0169-409X(93)90025-Y.
  98. Holland TA, Mikos AG. Biodegradable polymeric scaffolds. Improvements in bone tissue engineering through controlled drug delivery. Adv Biochem Eng Biotechnol 2006;102:161–185. DOI: 10.1007/b137205.
  99. Lee SH, Shin H. Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering. Adv Drug Deliv Rev 2007;59(4–5):339–359. DOI: 10.1016/j.addr.2007.03.016.
  100. Kim UJ, Park J, Kim HJ, et al. Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials 2005;26(15):2775–2785. DOI: 10.1016/j.biomaterials.2004.07.044.
  101. Parween S, Bhatnagar I, Bhosale S, et al. Cross-linked chitosan biofunctionalized paper-based microfluidic device towards long term stabilization of blood typing antibodies. Int J Biol Macromol 2020;163:1233–1239. DOI: 10.1016/j.ijbiomac.2020.07.075.
  102. Minoura N, Aiba SI, Higuchi M, et al. Attachment and growth of fibroblast cells on silk fibroin. Biochem Biophys Res Commun 1995;208:511–516. DOI: 10.1006/bbrc.1995.1368.
  103. Kim JY, Yang BE, Ahn JH, et al. Comparable efficacy of silk fibroin with the collagen membranes for guided bone regeneration in rat calvarial defects. J Adv Prosthodont 2014;6(6):539–546. DOI: 10.4047/jap.2014.6.6.539.
  104. Santin M, Motta A, Freddi G, et al. In vitro evaluation of the inflammatory potential of the silk fibroin. J Biomed Mater Res 1999;46(3):382–389. DOI: 10.1002/(sici)1097-4636(19990905)46:3<382::aid-jbm11>;2-r.
  105. Meinel L, Hofmann S, Karageorgiou V, et al. The inflammatory responses to silk films in vitro and in vivo. Biomaterials 2005;26:147–155. DOI: 10.1016/j.biomaterials.2004.02.047.
  106. Babensee JE, Anderson JM, McIntire LV, et al. Host response to tissue engineered devices. Adv Drug Deliv Rev 1998;33:111–139. DOI: 10.1016/s0169-409x(98)00023-4.
  107. Cao Y, Wang B. Biodegradation of silk biomaterials. Int J Mol Sci 2009;10:1514–1524. DOI: 10.3390/ijms10041514.
  108. Arai T, Freddi G, Innocenti R, et al. Biodegradation of Bombyx mori silk fibroin fibers and films. J Appl Polym Sci 2003;91(4):2383–2390. DOI: 10.1002/app.13393.
  109. Lu Q, Zhang B, Li M, et al. Degradation mechanism and control of silk fibroin. Biomacromolecules 2011;12(4):1080–1086. DOI: 10.1021/bm101422j.
  110. Horan RL, Antle K, Collette AL, et al. In vitro degradation of silk fibroin. Biomaterials 2005;26(17):3385–3393. DOI: 10.1016/j.biomaterials.2004.09.020.
  111. Li M, Ogiso M, Minoura N. Enzymatic degradation behavior of porous silk fibroin sheets. Biomaterials 2003;24(2):357–365. DOI: 10.1016/s0142-9612(02)00326-5.
  112. Wang Y, Rudym DD, Walsh A, et al. In vivo degradation of three-dimensional silk fibroin scaffolds. Biomaterials 2008;29(24-25):3415–3428. DOI: 10.1016/j.biomaterials.2008.05.002.
  113. Hu Y, Zhang Q, You R, et al. The relationship between secondary structure and biodegradation behavior of silk fibroin scaffolds. Adv Mater Sci Eng 2012;2012:1–5. DOI: 10.1155/2012/185905.
  114. Lu Q, Hu X, Wang X, et al. Water-insoluble silk films with silk I structure. Acta Biomater 2010;6:1380–1387. DOI: 10.1016/j.actbio.2009.10.041.
  115. Wang J-N, Liu Z-W, Yang Y-X, et al. Enzymatic degradation behavior of silk fibroin fiber treated by γ-ray irradiation. Text Res J 2012;82:1799–1805. DOI: 10.1177/0040517511427968.
  116. Buckwalter JA, Glimcher MJ, Cooper RR, et al. Bone biology. I: structure, blood supply, cells, matrix, and mineralization. Instr Course Lect 1996;45:371–386.
  117. Roach HI. Why does bone matrix contain non-collagenous proteins? The possible roles of osteocalcin, osteonectin, osteopontin and bone sialoprotein in bone mineralisation and resorption. Cell Biol Int 1994;18:617–628. DOI: 10.1006/cbir.1994.1088.
  118. Venkatesan J, Pallela R, Bhatnagar I, et al. Chitosan-amylopectin/hydroxyapatite and chitosan-chondroitin sulphate/hydroxyapatite composite scaffolds for bone tissue engineering. Int J Biol Macromol 2012;51(5):1033–1042. DOI: 10.1016/j.ijbiomac.2012.08.020.
  119. Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci 2010;123(Pt 24):4195–4200. DOI: 10.1242/jcs.023820.
  120. Kasoju N, Bora U. Silk fibroin in tissue engineering. Adv Healthc Mater 2012;1(4):393–412. DOI: 10.1002/adhm.201200097.
  121. Tae Young A, Kang JH, Kang DJ, et al. Interaction of stem cells with nano hydroxyapatite-fucoidan bionanocomposites for bone tissue regeneration. Int J Biol Macromol 2016;93(Pt B):1488–1491. DOI: 10.1016/j.ijbiomac.2016.07.027.
  122. Meinel L, Fajardo R, Hofmann S, et al. Silk implants for the healing of critical size bone defects. Bone 2005;37(5):688–698. DOI: 10.1016/j.bone.2005.06.010 [Erratum in: Bone 2008;43(6):1122].
  123. Guodong L, Fuqiang Z, Lijiao Z, et al. Glass transition temperature of polystyrene determined by DSC revisited. Acta Polym Sin 2010;1:1065–1069. DOI: 10.3724/SP.J.1105.2010.09329.
  124. Bhumiratana S, Grayson WL, Castaneda A, et al. Nucleation and growth of mineralized bone matrix on silk-hydroxyapatite composite scaffolds. Biomaterials 2011;32(11):2812–2820. DOI: 10.1016/j.biomaterials.2010.12.058.
  125. Jiang J, Hao W, Li Y, et al. Hydroxyapatite/regenerated silk fibroin scaffold-enhanced osteoinductivity and osteoconductivity of bone marrow-derived mesenchymal stromal cells. Biotechnol Lett 2013;35:657–661. DOI: 10.1007/s10529-012-1121-2.
  126. Bessa PC, Casal M, Reis RL. Bone morphogenetic proteins in tissue engineering: the road from laboratory to clinic, part II (BMP delivery). J Tissue Eng Regen Med 2008;2:81–96. DOI: 10.1002/term.74.
  127. Lee JS, Baek SD, Venkatesan J. In vivo study of chitosan-natural nano hydroxyapatite scaffolds for bone tissue regeneration. Int J Biol Macromol 2014;67:360–366. DOI: 10.1016/j.ijbiomac.2014.03.053.
  128. Kirker-Head C, Karageorgiou V, Hofmann S, et al. BMP-silk composite matrices heal critically sized femoral defects. Bone 2007;41(2):247–255. DOI: 10.1016/j.bone.2007.04.186 [Erratum in: Bone 2008;43(6):1124].
  129. Li C, Vepari C, Jin HJ, et al. Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials 2006;27(16):3115–3124. DOI: 10.1016/j.biomaterials.2006.01.022.
  130. Ding X, Wei X, Huang Y, et al. Delivery of demineralized bone matrix powder using a salt-leached silk fibroin carrier for bone regeneration. J Mater Chem B 2015;3(16):3177–3188. DOI: 10.1039/c5tb00046g.
  131. Ghanaati S, Unger RE, Webber MJ, et al. Scaffold vascularization in vivo driven by primary human osteoblasts in concert with host inflammatory cells. Biomaterials 2011;32(32):8150–8160. DOI: 10.1016/j.biomaterials.2011.07.041.
  132. Unger RE, Sartoris A, Peters K, et al. Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillary-like structures on three-dimensional porous biomaterials. Biomaterials 2007;28(27):3965–3976. DOI: 10.1016/j.biomaterials.2007.05.032.
  133. Fuchs S, Jiang X, Schmidt H, et al. Dynamic processes involved in the pre-vascularization of silk fibroin constructs for bone regeneration using outgrowth endothelial cells. Biomaterials 2009;30(7):1329–1338. DOI: 10.1016/j.biomaterials.2008.11.028.
  134. Unger RE, Ghanaati S, Orth C, et al. The rapid anastomosis between prevascularized networks on silk fibroin scaffolds generated in vitro with cocultures of human microvascular endothelial and osteoblast cells and the host vasculature. Biomaterials 2010;31(27):6959–6967. DOI: 10.1016/j.biomaterials.2010.05.057.
  135. Kanczler JM, Ginty PJ, White L, et al. The effect of the delivery of vascular endothelial growth factor and bone morphogenic protein-2 to osteoprogenitor cell populations on bone formation. Biomaterials 2010;31(6):1242–1250. DOI: 10.1016/j.biomaterials.2009.10.059.
  136. Farokhi M, Mottaghitalab F, Shokrgozar MA, et al. Bio-hybrid silk fibroin/calcium phosphate/PLGA nanocomposite scaffold to control the delivery of vascular endothelial growth factor. Mater Sci Eng C Mater Biol Appl 2014;35:401–410. DOI: 10.1016/j.msec.2013.11.023.
  137. Zhang W, Wang X, Wang S, et al. The use of injectable sonication-induced silk hydrogel for VEGF(165) and BMP-2 delivery for elevation of the maxillary sinus floor. Biomaterials 2011;32(35):9415–9424. DOI: 10.1016/j.biomaterials.2011.08.047.
  138. Chung C, Burdick JA. Engineering cartilage tissue. Adv Drug Deliv Rev 2008;60(2):243–262. DOI: 10.1016/j.addr.2007.08.027.
  139. Huey DJ, Hu JC, Athanasiou KA. Unlike bone, cartilage regeneration remains elusive. Science 2012;338(6109):917–921. DOI: 10.1126/science.1222454.
  140. Bhardwaj N, Singh YP, Devi D, et al. Potential of silk fibroin/chondrocyte constructs of muga silkworm Antheraea assamensis for cartilage tissue engineering. J Mater Chem B 2016;4(21):3670–3684. DOI: 10.1039/c6tb00717a.
  141. Wang Y, Blasioli DJ, Kim HJ, et al. Cartilage tissue engineering with silk scaffolds and human articular chondrocytes. Biomaterials 2006;27(25):4434–4442. DOI: 10.1016/j.biomaterials.2006.03.050.
  142. Wang Y, Kim UJ, Blasioli DJ, et al. In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells. Biomaterials 2005;26(34):7082–7094. DOI: 10.1016/j.biomaterials.2005.05.022.
  143. Uebersax L, Merkle HP, Meinel L. Insulin-like growth factor I releasing silk fibroin scaffolds induce chondrogenic differentiation of human mesenchymal stem cells. J Control Release 2008;127(1):12–21. DOI: 10.1016/j.jconrel.2007.11.006.
  144. Bhatnagar I, Mahato K, Ealla KKR, et al. Chitosan stabilized gold nanoparticle mediated self-assembled gliP nanobiosensor for diagnosis of Invasive Aspergillosis. Int J Biol Macromol 2018;110:449–456. DOI: 10.1016/j.ijbiomac.2017.12.084.
  145. Bhardwaj N, Nguyen QT, Chen AC. Potential of 3-D tissue constructs engineered from bovine chondrocytes/silk fibroin-chitosan for in vitro cartilage tissue engineering. Biomaterials 2011;32(25):5773–5781. DOI: 10.1016/j.biomaterials.2011.04.061.
  146. Silva SS, Motta A, Rodrigues MT, et al. Novel genipin-cross-linked chitosan/silk fibroin sponges for cartilage engineering strategies. Biomacromolecules 2008;9(10):2764–2774. DOI: 10.1021/bm800874q.
  147. Lien SM, Ko LY, Huang TJ. Effect of pore size on ECM secretion and cell growth in gelatin scaffold for articular cartilage tissue engineering. Acta Biomater 2009;5(2):670–679. DOI: 10.1016/j.actbio.2008.09.020.
  148. Ghezzi CE, Marelli B, Donelli I, et al. The role of physiological mechanical cues on mesenchymal stem cell differentiation in an airway tract-like dense collagen-silk fibroin construct. Biomaterials 2014;35(24):6236–6247. DOI: 10.1016/j.biomaterials.2014.04.040.
  149. Shi W, Sun M, Hu X, et al. Structurally and functionally optimized silk-fibroin-gelatin scaffold using 3D printing to repair cartilage injury in vitro and in vivo. Adv Mater 2017;29(29). DOI: 10.1002/adma.201701089.
  150. Singh N, Rahatekar SS, Koziol KK, et al. Directing chondrogenesis of stem cells with specific blends of cellulose and silk. Biomacromolecules 2013;14(5):1287–1298. DOI: 10.1021/bm301762p.
  151. Foss C, Merzari E, Migliaresi C, et al. Silk fibroin/hyaluronic acid 3D matrices for cartilage tissue engineering. Biomacromolecules 2013;14(1):38–47. DOI: 10.1021/bm301174x.
  152. Singh YP, Bhardwaj N, Mandal BB. Potential of agarose/silk fibroin blended hydrogel for in vitro cartilage tissue engineering. ACS Appl Mater Interfaces 2016;8(33):21236–21249. DOI: 10.1021/acsami.6b08285.
  153. Cai K, Yao K, Lin S, et al. Poly(D,L-lactic acid) surfaces modified by silk fibroin: effects on the culture of osteoblast in vitro. Biomaterials 2002;23(4):1153–1160. DOI: 10.1016/s0142-9612(01)00230-7.
  154. Baek HS, Park YH, Ki CS, et al. Enhanced chondrogenic responses of articular chondrocytes onto porous silk fibroin scaffolds treated with microwave-induced argon plasma. Surf Coat Technol 2008;202:5794–5797. DOI: 10.1016/j.surfcoat.2008.06.154.
  155. Jin SC, Baek HS, Woo YI, et al. Beneficial effects of microwave-induced argon plasma treatment on cellular behaviors of articular chondrocytes onto nanofibrous Silk fibroin mesh. Macromol Res 2009;17(9):703–708. DOI: 10.1007/BF03218931.
  156. Cheon YW, Lee WJ, Baek HS, et al. Enhanced chondrogenic responses of human articular chondrocytes onto silk fibroin/wool keratose scaffolds treated with microwave-induced argon plasma. Artif Organs 2010;34(5):384–392. DOI: 10.1111/j.1525-1594.2009.00871.x.
  157. Tiğli RS, Cannizaro C, Gümüşderelioğlu M, et al. Chondrogenesis in perfusion bioreactors using porous silk scaffolds and hESC-derived MSCs. J Biomed Mater Res A 2011;96(1):21–28. DOI: 10.1002/jbm.a.32949.
  158. Shangkai C, Naohide T, Koji Y, et al. Transplantation of allogeneic chondrocytes cultured in fibroin sponge and stirring chamber to promote cartilage regeneration. Tissue Eng 2007;13(3):483–492. DOI: 10.1089/ten.2006.0181.
  159. Seda Tigli R, Ghosh S, Laha MM, et al. Comparative chondrogenesis of human cell sources in 3D scaffolds. J Tissue Eng Regen Med 2009;3(5):348–360. DOI: 10.1002/term.169.
  160. Tonk C, Witzler M, Schulze M, et al. Mesenchymal stem cells. In: Brand-Saberi B, editor. Essential current concepts in stem cell biology. Berlin, Germany: Springer; 2020. p. 21–39.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.