The Journal of Contemporary Dental Practice

Register      Login

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue

Online First

Archive
Related articles

VOLUME 23 , ISSUE 8 ( August, 2022 ) > List of Articles

ORIGINAL RESEARCH

Effect of Adding Silver Nanoparticles on the Flexural Strength of Feldspathic Porcelain

Farnaz Firouz, Fatemeh Amiri, Sara Khazaei, Fariborz Vafaee, Abbas Farmany, Maryam Farhadian

Keywords : Feldspathic porcelain, Flexural strength, Nanoparticles

Citation Information : Firouz F, Amiri F, Khazaei S, Vafaee F, Farmany A, Farhadian M. Effect of Adding Silver Nanoparticles on the Flexural Strength of Feldspathic Porcelain. J Contemp Dent Pract 2022; 23 (8):793-800.

DOI: 10.5005/jp-journals-10024-3393

License: CC BY-NC 4.0

Published Online: 29-11-2022

Copyright Statement:  Copyright © 2022; The Author(s).


Abstract

Aim: This study aimed to evaluate the impact of silver nanoparticles (AgNPs) on the flexural strength of feldspathic porcelain. Materials and methods: Eighty bar-shaped ceramic specimens were prepared in five groups, including a control group and four case groups containing 5, 10, 15, and 20% w/w of AgNPs. Each group consisted of 16 specimens. Silver Nanoparticles were synthesized by a simple deposition method. Three-point bending test was used in the universal testing machine (UTM) machine to evaluate the flexural strength of the specimens. The fractured surface of the ceramic samples was analyzed under scanning electron microscopy (SEM). In order to analyze the data obtained, one-way analysis of variance (ANOVA) and Tukey tests were used (p <0.05). Results: The results implied that the average flexural strength of the samples in the control group was 90.97 MPa and for the experimental groups reinforced with 5, 10, 15, and 20% w/w of AgNPs were 89, 81, 76, and 74 MPa, respectively. Conclusion: The addition of AgNPs with a certain amount (up to a concentration of 15% w/w) without reducing the flexural strength improves the antimicrobial properties of the materials used and ultimately improves its quality for dental applications. Clinical significance: The addition of AgNPs can improve the antimicrobial properties and suitability of the materials.


HTML PDF Share
  1. Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano 2009;3(1):16–20. https://doi.org/10.1021/nn90 0002m.
  2. Hemmati MA, Hamze F, Fatemi M, et al. Evaluating the physical properties of novel zinc phosphate and zinc polycarboxylate cements containing zinc oxide nanoparticles. Avicenna J Dent Res 2017;9(3):e60720–e60720. DOI: 10.5812/ajdr.60720.
  3. Priyadarsini S, Mukherjee S, Mishra M. Nanoparticles used in dentistry: A review. J oral biol craniofac res 2018;8(1):58–67. DOI: 10.1016/j.jobcr.2017.12.004.
  4. García-Contreras R, Argueta-Figueroa L, Mejía-Rubalcava C, et al. Perspectives for the use of silver nanoparticles in dental practice. Int dent j 2011;61(6):297–301. DOI: 10.1111/j.1875-595X.2011.00072.x.
  5. Magalhaes APR, Santos LB, Lopes LG, et al. Nanosilver application in dental cements. Intional Sch Res Notices 2012;2012:365438. DOI: 10.5402/2012/365438.
  6. Lee SH, Jun BH. Silver nanoparticles: Synthesis and application for nanomedicine. Int J Mol Sci 2019;20(4):865. DOI: 10.3390/ijms 20040865.
  7. Thangavelu L, Adil AH, Arshad S, et al. Antimicrobial properties of silver nitrate nanoparticle and its application in endodontics and dentistry: A review of literature. J Nanomater 2021;2021:1–12. DOI: 10.1155/2021/9132714.
  8. Nikanjam S, Abbasi S, Khazaei S. Effect of different bleaching methods on optical behaviors of CAD/CAM ceramics. Avicenna J Dent Res 2021;13(4):113–118. DOI: 10.34172/ajdr.2021.22.
  9. Sasikala C, Chander NG. Comparative evaluation of flexural strength of nano-zirconia-integrated pressable feldspathic and lithium disilicate ceramics. J Contemp Dent Prac 2018;19(3):339–344. PMID: 29603709.
  10. Karthikeyan V, Chander NG, Reddy JR, et al. Effects of incorporation of silver and titanium nanoparticles on feldspathic ceramic toughness. J Dent Res Dent Clin Dent Prospects 2019;13(2):98–102. DOI: 10.15171/joddd.2019.015.
  11. Khan M, Shaik MR, Adil SF, et al. Plant extracts as green reductants for the synthesis of silver nanoparticles: Lessons from chemical synthesis. Dalton Trans 2018;47(35):11988–12010. https://doi.org/ 10.1039/C8DT01152D.
  12. Nathan ASC, Tah R, Balasubramanium MK. Evaluation of fracture toughness of zirconia silica nano-fibres reinforced feldespathic ceramic. J Oral Biol Craniofac Res 2018;8(3):221–224. DOI: 10.1016/j.jobcr.2017.09.003.
  13. Balasubramanian S, Jeyapaul U, Kala SMJ. Antibacterial activity of silver nanoparticles using Jasminum auriculatum stem extract. Int JNanosci 2019;18(01):1850011. https://doi.org/10.1142/S0219581X 18500114.
  14. Prabhu S, Poulose EK. Silver nanoparticles: Mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int nano letters 2012;2(1):32. DOI: 10.1186/2228-5326-2-32.
  15. Senthil B, Devasena T, Prakash B, et al. Non-cytotoxic effect of green synthesized silver nanoparticles and its antibacterial activity. J Photochem Photobiol B 2017;177:1–7. DOI: 10.1016/j.jphotobiol.2017.10.010.
  16. Sumitha S, Vasanthi S, Shalini S, et al. Durio zibethinus rind extract mediated green synthesis of silver nanoparticles: Characterization and biomedical applications. Pharmacogn Mag 2019;15(60):52–58. DOI: 10.4103/pm.pm_400_18.
  17. Vijayan R, Joseph S, Mathew B. Anticancer, antimicrobial, antioxidant, and catalytic activities of green-synthesized silver and gold nanoparticles using Bauhinia purpurea leaf extract. Bioprocess Biosyst Eng 2019;42(2):305–319. DOI: 10.1007/s00449-018-2035-8.
  18. Hochvaldová L, Večeřová R, Kolář M, et al. Antibacterial nanomaterials: Upcoming hope to overcome antibiotic resistance crisis. Nanotechnol. Rev 2022;11(1):1115–1142. DOI: 10.1515/ntrev-2022-0059.
  19. Cherif A, Manal RA-E, Hashem RMM. The antibacterial and antifungal effect of Silver Nanoparticles and silver hydroxyapatite nanoparticles on Dental Ceramic. Rep Opinion 2015;7(7):83–88. http://www.dx.doi.org/10.7537/marsroj070715.12.
  20. Sastry M, Ahmad A, Khan MI, et al. Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 2003;85:162–170. https://www.jstor.org/stable/24108579.
  21. Shankar SS, Ahmad A, Pasricha R, et al. Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 2003;13(7):1822–1826. https://doi.org/10.1039/B303808B.
  22. Kim JH, Park S-W, Lim HP, et al. Biocompatibility evaluation of feldspathic porcelain with nano-sized silver ion particles. J Nanosci Nanotechnol 2018;18(2):1237–1240. DOI: 10.1166/jnn.2018.14873.
  23. Uno M, Kurachi M, Wakamatsu N, et al. Effects of adding silver nanoparticles on the toughening of dental porcelain. J Prosthet Dent 2013;109(4):241–247. DOI: 10.1016/S0022-3913(13)60052-9.
  24. Ferreira I, Vidal CL, Botelho AL, et al. Effect of nanomaterial incorporation on the mechanical and microbiological properties of dental porcelain. J Prosthet Dent 2020;123(3):529. e1-529.e5. DOI: 10.1016/j.prosdent.2019.10.012.
  25. Hashem RM, Mohsen CA, Abu-Eittah MR. Effect of silver nanoparticles and silver hydroxyapatite nanoparticles on color and fracture strength of dental ceramic. Mater Sci Med 2015;61(2):2–7. Corpus ID: 212555816.
  26. Katamish H, Karaksy AO, el-Mahallawy OS. The effect of the dissolution process of hydroxyapatite added to conventional dental porcelain on its mechanical strength. Egypt Dent J 1995;41(2):1085–1094. PMID: 9497644.
  27. Fujieda T, Uno M, Ishigami H, et al. Effects of dental porcelain containing silver nanoparticles on static fatigue. Dent Mater J 2013;32(3):405–408. DOI: 10.4012/dmj.2012-266.
  28. Fujieda T, Uno M, Ishigami H, et al. Addition of platinum and silver nanoparticles to toughen dental porcelain. Dent mater j 2012;31(5): 711–716. DOI: 10.4012/dmj.2012-044.
  29. Firoz F, Vafaee F, Farmany A, et al. Effect of green synthesized silver nanoparticles on optical behavior of feldspathic porcelain. Part Sci Technol 2022;40(1):10–17. DOI: 10.1080/02726351.2021.1895385.
  30. Tah R, Chidambaranathan AS, Balasubramanium MK, et al. Effect of zirconia silica nanofibers on flexural strength of feldspathic ceramic – An experimental study. Adv Biomed Res 2021;10:31. DOI: 10.4103/abr.abr_132_20.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.