The Journal of Contemporary Dental Practice

Register      Login



Volume / Issue

Online First

Related articles

VOLUME 23 , ISSUE 8 ( August, 2022 ) > List of Articles


Impact of Three Different Surgical Drilling Protocols on Early Loaded Single Implant in Posterior Maxilla: A 3-year Follow-up

Heba Abo-Elfetouh Elsheikh, Abdel-Monem Tawfik Gadallah, Bassant Mowafey, Islam Kandil, Ahmed S Salem

Keywords : Bone expanders, Early loaded dental implant, Osseodensification, Primary stability, Posterior maxilla, Undersized drilling technique

Citation Information : Elsheikh HA, Gadallah AT, Mowafey B, Kandil I, Salem AS. Impact of Three Different Surgical Drilling Protocols on Early Loaded Single Implant in Posterior Maxilla: A 3-year Follow-up. J Contemp Dent Pract 2022; 23 (8):819-827.

DOI: 10.5005/jp-journals-10024-3391

License: CC BY-NC 4.0

Published Online: 29-11-2022

Copyright Statement:  Copyright © 2022; The Author(s).


Aim: This study aims to compare three different drilling techniques for implant site preparation to enhance the primary stability of the early loaded single implant in the posterior maxilla. Materials and methods: A total of 36 dental implants were used in this study for the replacement of a missing single tooth or more in the maxillary posterior region with an early loaded dental implant. The patients were randomly divided into three groups. In group I, the drilling was performed using an undersized drilling technique, in group II, the drilling was performed using bone expanders, and in group III, the drilling was performed using the osseodensification (OD) technique. Patients were evaluated clinically and radiographically at regular time intervals immediately, 4 weeks, 6 months, 1 year, 2 years, and 3 years after surgery. All clinical and radiographic parameters were subjected to statistical analysis. Results: All implants in group I were stable and successful, while 11 from 12 implants survived in both groups II and III. There was no significant difference in peri-implant soft tissue health and marginal bone loss (MBL) throughout the whole study period between the three groups, while there was a significant difference in implant stability and insertion torque between groups I, II, and III at the time of implant placement. Conclusion: Preparing the implant bed using the undersized drilling technique with drills with similar geometry to the implant being inserted provides high implant primary stability without the need for additional instruments or cost. Clinical significance: Dental implants can be early loaded in the posterior maxilla by using an undersized drilling technique, as it improves primary stability.

  1. Gulsahi A. Bone quality assessment for dental implants. In: Turkyilmaz I, ed. Implant dentistry. Dent Most Promis Discip Dent. 2011:437–452. DOI: 10.5772/16588.
  2. Misch CE. Bone density: A key determinant for clinical success. In: Misch CE, editor. Contemporary Implant Dentistry, 2nd edition. St. Louis: CV Mosby Company; 1999. pp. 109–118.
  3. Gibbs CH, Mahan PE, Mauderli A, et al. Limits of human bite strength. J Prosthet Dent 1986;56(2):226–229. DOI: 10.1016/0022-3913(86) 90480-4.
  4. Hagberg C. Assessment of bite force: A review. J Craniomandib Disord 1987;1(3):162–169. PMID: 3325528.
  5. Brunski JB. Biomechanical factors affecting the bone–dental implant interface. Clin Mater 1992;10(3):153–201. DOI: 10.1016/0267-6605(92)90049-y.
  6. Karacayli U, Dikicier E, Dikicier S. Dental implant placement in inadequate posterior maxilla. Curr Concepts Dent Implantol 2015: 105–125. DOI: 10.5772/59458.
  7. Caudry S, Landzberg M. Lateral window sinus elevation technique: Managing challenges and complications. J Can Dent Assoc 2013;79:d101. PMID: 24309036.
  8. Morand M, Irinakis T. The challenge of implant therapy in the posterior maxilla: Providing a rationale for the use of short implants. J Oral Implantol 2007;33(5):257–266. DOI: 10.1563/1548-1336(2007) 33[257:TCOITI]2.0.CO;2.
  9. Ryu HS, Namgung C, Heo YK, et al. Early loading of splinted implants supporting a two-unit fixed partial denture in the posterior maxilla: 13-Month results from a randomized controlled clinical trial of two different implant systems. Clin Oral Implants Res 2016;27(8):1017–1025. DOI: 10.1111/clr.12667.
  10. Roccuzzo M, Aglietta M, Cordaro L. Implant loading protocols for partially edentulous maxillary posterior sites. Int J Oral Maxillofac Implants 2009;24(Suppl):147–157. PMID: 19885442.
  11. Sennerby L, Meredith N. Implant stability measurements using resonance frequency analysis: Biological and biomechanical aspects and clinical implications. Periodontol 2000. 2008;47(1):51–66. DOI: 10.1111/j.1600-0757.2008.00267.x.
  12. Bilhan H, Geckili O, Mumcu E, et al. Influence of surgical technique, implant shape and diameter on the primary stability in cancellous bone. J Oral Rehabil 2010;37(12):900–907. DOI: 10.1111/j.1365-2842.2010.02117.x.
  13. Friberg B, Sennerby L, Gröndahl K, et al. On cutting torque measurements during implant placement: A 3-year clinical prospective study. Clin Implant Dent Relat Res 1999;1(2):75–83. DOI: 10.1111/j.1708-8208.1999.tb00095.x.
  14. Tabassum A, Walboomers XF, Wolke JGCGC, et al. Bone particles and the undersized surgical technique. J Dent Res 2010;89(6):581–586. DOI: 10.1177/0022034510363263.
  15. Huwais S. Fluted osteotome and surgical method for use. US Patent Application US2013/0004918. 2013. Available at: Accessed date: 3 January, 2013.
  16. Huwais S, Meyer EG. A Novel Osseous densification approach in implant osteotomy preparation to increase biomechanical primary stability, bone mineral density, and bone-to-implant contact. Int J Oral Maxillofac Implants 2017;32(1):27–36. DOI: 10.11607/jomi.4817.
  17. Anitua E. Ridge expansion with motorized expander drills. Dent Dialogue 2004;2:3–14.
  18. Coutant JC, Seguela V, Hauret L, et al. Assessment of the correlation between implant stability and bone density by computed tomography and resonance frequency analysis in fresh cadavers. Int J Oral Maxillofac Implants 2014;29:1264-1270. DOI: 10.11607/jomi.2607.
  19. Jeong MA, Jung MK, Kim SG, et al. Implant atability measurements in the long-term follow-up of Dentis implants: A retrospective study w periotest. Implant Dent 2015;24:263–266. DOI: 10.1097/ID.0000000000000239.
  20. Gehrke SA, Marin GW. Biomechanical evaluation of dental implants with three different designs: Removal torque and resonance frequency analysis in rabbits. Ann Anat 2015;199:30–35. DOI: 10.1016/j.aanat.2014.07.009.
  21. Falisi G, Severino M, Rastelli C, et al. The effects of surgical preparation techniques and implant macro-geometry on primary stability: An in vitro study. Med Oral Patol Oral Cir Bucal 2017;22(2):e201–e206. DOI: 10.4317/medoral.21286.
  22. Büchter A, Kleinheinz J, Wiesmann HP, et al. Interface reaction at dental implants inserted in condensed bone. Clin Oral Implants Res 2005;16(5):509–517. DOI: 10.1111/j.1600-0501.2005.01111.x.
  23. Frost HM. A brief review for orthopedic surgeons: Fatigue damage (microdamage) in bone (its determinants and clinical implications). J Orthop Sci 1998;3(5):272–281. DOI: 10.1007/s007760050053.
  24. Verborgt O, Gibson GJ, Schaffler MB. Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo. J Bone Miner Res 2000;15(1):60–67. DOI: 10.1359/jbmr. 2000.15.1.60.
  25. Niebur GL, Feldstein MJ, Keaveny TM. Biaxial failure behavior of bovine tibial trabecular bone. J Biomech Eng 2002;124(6):699–705. DOI: 10.1115/1.1517566.
  26. Futami T, Fujii N, Ohnishi H, et al. Tissue response to titanium implants in the rat maxilla: Ultrastructural and histochemical observations of the bone–titanium interface. J Periodontol 2000;71(2):287–298. DOI: 10.1902/jop.2000.71.2.287.
  27. Zubery Y, Bichacho N, Moses O, et al. Immediate loading of modular transitional implants: A histologic and histomorphometric study in dogs. Int J Periodontics Restorative Dent 1999;19(4):343–353. PMID: 10709501.
  28. Alghamdi H, Anand PS, Anil S. Undersized implant site preparation to enhance primary implant stability in poor bone density: A prospective clinical study. J Oral Maxillofac Surg 2011;69:e506–e511. DOI: 10.1016/j.joms.2011.08.007.
  29. Delgado-Ruiz R, Gold J, Marquez TS, et al. Under-drilling versus hybrid osseodensification technique: Differences in implant primary stability and bone density of the implant bed walls. Materials (Basel) 2020;13(2):390. DOI: 10.3390/ma13020390.
  30. Rastelli C, Falisi G, Gatto R, et al. Implant stability in different techniques of surgical sites preparation: An in vitro study. Oral Implantol (Rome) 2014;7(2):33–39. PMID: 25694799; PMCID: PMC4302746.
  31. Cehreli MC, Karasoy D, Akca K, et al. Meta-analysis of methods used to assess implant stability. Int J Oral Maxillofac Implants 2009;24(6):1015–1032. PMID: 20162105.
  32. Goswami MM, Kumar M, Vats A, et al. Evaluation of dental implant insertion torque using a manual ratchet. Med J Armed Forces India 2015;71(Suppl. 2):S327–S332. DOI: 10.1016/j.mjafi.2013.07.010.
  33. Grandi T, Garuti G, Guazzi P, et al. A longitudinal, multicenter study on the relationship between insertion torque and peri-implant bone resorption. 2010;1(2):33–40.
  34. Tian JH, Neiva R, Coelho PG, et al. Alveolar ridge expansion: Comparison of osseodensification and conventional osteotome techniques. J Craniofac Surg 2019;30(2):607–610. DOI: 10.1097/SCS.00000 00000004956.
  35. Shadid RM, Sadaqah NR, Othman SA. Does the implant surgical technique affect the primary and/or secondary stability of dental implants? A systematic review. Int J Dent 2014;2014:204838. DOI: 10.1155/2014/204838.
  36. Tabassum A, Meijer GJ, Walboomers XF, et al. Biological limits of the undersized surgical technique: A study in goats. Clin Oral Implants Res 2011;22(2):129–134. DOI: 10.1111/j.1600-0501.2010.02016.x.
  37. Krafft T, Graef F, Winter W, et al. Use of osteotomes for implant bed preparation: Effect on material properties of bone and primary implant stability. J Oral Implantol 2013;39(S1):241–247. DOI: 10.1563/AAID-JOI-D-10-00187.
  38. Trisi P, Berardini M, Falco A, et al. New osseodensification implant site preparation method to increase bone density in low-density bone: In vivo evaluation in sheep. Implant Dent 2016;25(1):24–31. DOI: 10.1097/ID.0000000000000358.
  39. Bhardwaj I, Bhushan A, Baiju CS, et al. Evaluation of peri-implant soft tissue and bone levels around early loaded implant in restoring single missing tooth: A clinico–radiographic study. J Indian Soc Periodontol 2016;20(1):36–41. DOI: 10.4103/0972-124X.168486.
  40. Kumar PKS, Ravikumar A, Elavarasu S, et al. Clinical and radiographic evaluation of immediate and delayed single-tooth implant placement: An 18-month follow-up study. J Periodontol Implant Dent 2013;5(2):41–54. DOI: 10.5681/jpid.2013.008.
  41. You T-M, Choi B-H, Li J, et al. Morphogenesis of the peri-implant mucosa: A comparison between flap and flapless procedures in the canine mandible. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol 2009;107(1):66–70. DOI: 10.1016/j.tripleo.2008.05.045.
  42. Jepsen S, Rühling A, Jepsen K, et al. Progressive peri-implantitis. Incidence and prediction of peri-implant attachment loss. Clin Oral Implants Res 1996;7(2):133–142. DOI: 10.1034/j.1600-0501.1996. 070207.x.
  43. Block MS, Mercante DE, Lirette D, et al. Prospective evaluation of immediate and delayed provisional single tooth restorations. J Oral Maxillofac Surg 2009;67(11):89–107. DOI: 10.1016/j.joms.2009.07.009.
  44. Sunitha VR, Ramakrishnan T, Kumar SS, et al. Soft tissue preservation and crestal bone loss around single-tooth implants. J Oral Implantol 2008;34(4):223–229. DOI: 10.1563/0.907.1.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.