Citation Information :
Alshehri A, Hakami Z, Marran K, Qaysi A, Shabi M, Bokhari A. Unilateral vs Bilateral Maxillary Canine Impaction: A Cone–Beam Computed Tomography Study of Patterns and Associations. J Contemp Dent Pract 2023; 24 (1):21-28.
Aim: This retrospective study aimed to compare and evaluate the pattern of maxillary canine impaction and its association with other anomalies using cone–beam computed tomography (CBCT).
Methods: A total of 59 CBCT records of patients (ages 12 and up) were divided into two groups: A total of 35 subjects with unilateral canine impactions and 24 subjects with bilateral canine impactions. The CBCT data were analyzed for the measurement of qualitative and quantitative variables.
Results: In unilateral canine impaction, the mesiodistal (MD) width of the central incisors and the nasal cavity (NC) width were wider (p < 0.05). The canine–palatal plane (U3-PP) distance was significantly longer in bilateral canine impaction (p < 0.05). The distance of the impacted canines from the palatal and mid-sagittal planes, the anterior dental arch width, and the maxillary skeletal width changed significantly with the position of the impacted canines (p < 0.05). Males had 0.185 odds of presenting with a bilateral canine impaction as compared to females (p = 0.025). The odds of having bilateral canine impaction with a longer canine-midsagittal plane (U3-MSP) distance was 1.30 (p = 0.003).
Conclusion: The findings indicate a gender predilection with females showing a greater prevalence of bilateral canine impaction. Supernumerary teeth were associated with unilateral impacted canines and lower canine impaction with bilaterally impacted canines.
Clinical significance: Anomalies in the form of the maxillary central and lateral incisors, distance from the maxillary canine to the palatal plane and the mid-sagittal plane, NC width, maxillary skeletal width, and gender, are the best discriminating parameters between unilateral and bilateral canine impactions.
Litsas G, Acar A. A review of early displaced maxillary canines: Etiology, diagnosis, and interceptive treatment. Open Dent J 2011;5:39–47. DOI: 10.2174/1874210601105010039.
Lövgren ML, Dahl O, Uribe P, et al. Prevalence of impacted maxillary canines: An epidemiological study in a region with systematically implemented interceptive treatment. Eur J Orthod 2019;41(5): 454–459. DOI: 10.1093/ejo/cjz056.
Yan B, Sun Z, Fields H, et al. Maxillary canine impaction increases root resorption risk of adjacent teeth: A problem of physical proximity. Am J Orthod Dentofac Orthop 2012;142(6):750–757.
Alqerban A, Jacobs R, Lambrechts P, et al. Root resorption of the maxillary lateral incisor caused by impacted canine: A literature review. Clin Oral Investig 2009;13(3):247–255. DOI: 10.1007/s00784-009-0262-8.
Katz MI. Angle classification revisited 2: A modified Angle classification. Am J Orthod Dentofac Orthop 1992;102(3):277–284. DOI: 10.1016/S0889-5406(05)81064-9.
Bishara SE, Ortho. D. Impacted maxillary canines: A review. Am J Orthod Dentofac Orthop 1992;101(2):159–171. DOI: 10.1016/0889-5406(92)70008-X.
Cooke J, Wang H-L. Canine impactions: incidence and management. Int J Periodontics Restorative Dent 2006;26(5):483–491. PMID: 17073358.
da Silva Santos LM, Bastos LC, Oliveira–Santos C, et al. Cone–beam computed tomography findings of impacted upper canines. Imaging Sci Dent 2014;44(4):287–292. DOI: 10.5624/isd.2014.44.4.287.
Zilberman Y, Cohen B, Becker A. Familial trends in palatal canines, anomalous lateral incisors, and related phenomena. Eur J Orthod 1990;12(2):135–139. DOI: 10.1093/ejo/12.2.135.
Dağsuyu İM, Kahraman F, Okşayan R. Three-dimensional evaluation of angular, linear, and resorption features of maxillary impacted canines on cone–beam computed tomography. Oral Radiol 2018;34(1):66–72. DOI: 10.1007/s11282-017-0289-5.
Ericson S, Kurol J. Early treatment of palatally erupting maxillary canines by extraction of the primary canines. Eur J Orthod 1988;10(4):283–295. DOI: 10.1093/ejo/10.4.283.
Becker A, Chaushu S. Etiology of maxillary canine impaction: A review. Am J Orthod Dentofac Orthop 2015;148(4):557–567. DOI: 10.1016/j.ajodo.2015.06.013.
Becker A, Peck S, Peck L, et al. Palatal canine displacement: Guidance theory or an anomaly of genetic origin? A letter to the editor from Adrian Becker, with a response from Sheldon and Leena Peck, and Matti Kataja. Angle Orthod 1995;65(2):95–102. DOI: 10.1043/0003-3219(1995)065<0095:PCDGTO>2.0.CO;2.
Peck S, Peck L, Kataja M. The palatally displaced canine as a dental anomaly of genetic origin. Angle Orthod 1994;64(4):250–256. DOI: 10.1043/0003-3219(1994)064<0249:WNID>2.0.CO;2.
Thilander B, Jakobsson SO. Local factors in impaction of maxillary canines. Acta Odontol Scand 1968;26(2):145–168. DOI: 10.3109/00016356809004587.
Brin I, Becker A, Shalhav M. Position of the maxillary permanent canine in relation to anomalous or missing lateral incisors: A population study. Eur J Orthod 1986;8(1):12–16. DOI: 10.1093/ejo/8.1.12.
Laurenziello M, Montaruli G, Gallo C, et al. Determinants of maxillary canine impaction: Retrospective clinical and radiographic study. J Clin Exp Dent 2017;9(11):e1304. DOI: 10.4317/jced.54095.
Rutledge MS, Hartsfield JK Jr. Genetic factors in the Eeiology of palatally displaced canines. Semin Orthod 2010;16:165–171. DOI: 10.1053/j.sodo.2010.05.001.
Kumar S, Mehrotra P, Bhagchandani J, et al. Localization of impacted canines. J Clin diagnostic Res JCDR 2015;9(1):ZE11–ZE14. DOI: 10.7860/JCDR/2015/10529.5480.
Schroder AGD, Guariza–Filho O, de Araujo CM, et al. To what extent are impacted canines associated with root resorption of the adjacent tooth? A systematic review with meta-analysis. J Am Dent Assoc 2018;149(9):765–777.
Grisar K, Piccart F, Al-Rimawi AS, et al. Three-dimensional position of impacted maxillary canines: Prevalence, associated pathology and introduction to a new classification system. Clin Exp Dent Res 2019;5(1):19–25. DOI: 10.1002/cre2.151.
D Oleo–Aracena MF, Arriola–Guillén LE, Rodríguez–Cárdenas YA, et al. Skeletal and dentoalveolar bilateral dimensions in unilateral palatally impacted canine using cone–beam computed tomography. Prog Ortho 2017;18(1):7. DOI: 10.1186/s40510-017-0160-6.
Yan B, Sun Z, Fields H, et al. Etiologic factors for buccal and palatal maxillary canine impaction: A perspective based on cone–beam computed tomography analyses. Am J Orthod Dentofac Orthop 2013;143(4):527–534. DOI: 10.1016/j.ajodo.2012.11.021.
Alassiry A. Radiographic assessment of the prevalence, pattern and position of maxillary canine impaction in Najran (Saudi Arabia) population using orthopantomograms: A cross-sectional, retrospective study. Saudi Dent J 2020;32(3):155–159. DOI: https://doi.org/10.1016/j.sdentj.2019.08.002.
Alyami B, Braimah R, Alharieth S. Prevalence and pattern of impacted canines in Najran, South Western Saudi Arabian population. Saudi Dent J 2020;32(6):300–305. DOI: 10.1016/j.sdentj.2019.10.002.
McConnell TL, Hoffman DL, Forbes DP, et al. Maxillary canine impaction in patients with transverse maxillary deficiency. ASDC J Dent Child 1996;63(3):190–195. PMID: 8853823.
Prskalo K, Zjača K, Škarić–Jurić T, et al. The prevalence of lateral incisor hypodontia and canine impaction in Croatian population. Coll Antropol 2008;32(4):1105–1109. PMID: 19149215.
Syryńska M, Budzyńska A. The incidence of uni-and bilateral impacted maxillary canines and their position in dental arch depending on gender and age. Ann Acad Med Stetin 2008;54:132–137. PMID: 19374243.
Al-Tawachi A, Alhaija ESA, Al-Jamal GA. Evaluation of maxillary canine root and maxillary bone thickness and density in patients with displaced maxillary canines: A cone–beam tomography study. Am J Orthod Dentofac Orthop 2022;162(3):318–330. DOI: 10.1016/j.ajodo.2021.03.025.
Al-Nimri K, Gharaibeh T. Space conditions and dental and occlusal features in patients with palatally impacted maxillary canines: An aetiological study. Eur J Orthod 2005;27(5):461–465. DOI: 10.1093/ejo/cji022.
Alhammadi M-S, Asiri H-A, Almashraqi A-A. Incidence, severity and orthodontic treatment difficulty index of impacted canines in Saudi population. J Clin Exp Dent 2018;10(4):e327–e334. DOI: 10.4317/jced.54385. DOI: 10.4317/jced.54385.
Walker L, Enciso R, Mah J. Three-dimensional localization of maxillary canines with cone-beam computed tomography. Am J Orthod Dentofac Orthop 2005;128(4):418–423. DOI: 10.1016/j.ajodo.2004.04.033.
Sacerdoti R, Baccetti T. Dentoskeletal features associated with unilateral or bilateral palatal displacement of maxillary canines. Angle Orthod. 2004 Dec;74(6):725-32. DOI: 10.1043/0003-3219.
Brenchley Z, Oliver RG. Morphology of anterior teeth associated with displaced canines. Br J Orthod 1997;24(1):41–45. DOI: 10.1093/ortho/24.1.41.
Oliver RG, Mannion JE, Robinson JM. Morphology of the maxillary lateral incisor in cases of unilateral impaction of the maxillary canine. Br J Orthod 1989;16(1):9–16. DOI: 10.1179/bjo.16.1.9.
Alqerban A, Jacobs R, Fieuws S, et al. Radiographic predictors for maxillary canine impaction. Am J Orthod Dentofac Orthop 2015;147(3):345–354. DOI: 10.1016/j.ajodo.2014.11.018.
Mohammed AK, Sravani G, Vallappareddy D, et al. Localization of impacted canines: A comparative study of computed tomography and orthopantomography. J Med Life 2020;13(1):56–63. DOI: 10.25122/jml-2020-0001.
Chaushu S, Zilberman Y, Becker A. Maxillary incisor impaction and its relationship to canine displacement. Am J Orthod Dentofac Orthop 2003;124(2):144–150. DOI: 10.1016/s0889-5406(03)00344-5.
Saiar M, Rebellato J, Sheats RD. Palatal displacement of canines and maxillary skeletal width. Am J Orthod Dentofac Orthop 2006;129(4):511–519. DOI: 10.1016/j.ajodo.2005.03.021.
Oz AZ, Oz AA, El H, Palomo JM. Maxillary sinus volume in patients with impacted canines. Angle Orthod. 2017;87(1):25–32.