The Journal of Contemporary Dental Practice

Register      Login



Volume / Issue

Online First

Related articles

VOLUME 24 , ISSUE 10 ( October, 2023 ) > List of Articles


Can an Alginate-based Wound Dressing Modified with Garden Cress Substitute for COE-PAK as a Wound Dressing? An In Vitro Study

Nahla Abdelmonem, Rania Salama, Dina H Mostafa

Keywords : Alginate, Antibacterial, COE-PAK, Cytotoxicity, Garden cress, In vitro wound healing

Citation Information : Abdelmonem N, Salama R, Mostafa DH. Can an Alginate-based Wound Dressing Modified with Garden Cress Substitute for COE-PAK as a Wound Dressing? An In Vitro Study. J Contemp Dent Pract 2023; 24 (10):787-797.

DOI: 10.5005/jp-journals-10024-3584

License: CC BY-NC 4.0

Published Online: 05-12-2023

Copyright Statement:  Copyright © 2023; The Author(s).


Aim: The aim of the current study was to prepare a natural oral wound dressing from alginate modified with garden cress (GC), a rich source of antibacterial phytochemical compounds essential for wound healing. Materials and methods: Sodium alginate (SA) dressing (negative control group), was prepared and modified with GC seeds extracts (25 µg/mL and 50 µg/mL) as the intervention groups, and COE-PAK was the positive control group. Cytotoxicity was measured using WST-1 assay (n = 15) after 24 and 48 hours. The in vitro wound healing assay (n = 15) was assessed in terms of wound width, and cell migration rate (0, 24, 48, and 72 hours). Agar diffusion test was performed to investigate the antibacterial action (n = 15) of the groups against Streptococcus mutans and Lactobacillus casei strains. Results were significant at p ≤ 0.05. Results: There was no statistically significant difference in cytotoxicity in all groups (p = 0.24 at 24 hours and 0.1 at 48 hours). Garden cress-containing groups revealed the lowest mean value of wound width (0.27 mm ± 0.01 and 0.23 mm ± 0.01 for 25 µg/mL and 50 µg/mL, respectively at 48 hours) and the highest mean value of cell migration rate (0.013 mm/hour ± 0.004 and 0.014 mm/hour ± 0.004 for 25 µg/mL and 50 µg/mL, respectively at 48 hours), in addition to the highest antibacterial action (1.49 mm ± 0.05 and 2.14 mm ± 0.09 for 25 µg/mL and 50 µg/mL, respectively against S. mutans, 1.43 mm ± 0.07 and 2.55 mm ± 0.09 for 25 µg/mL and 50 µg/mL, respectively against L. casei). Conclusion: Alginate wound dressing modified with GC extract could be considered a promising wound dressing material in terms of wound healing and antibacterial action. Clinical significance: Ready-to-use alginate-based wound dressing modified with GC extract may represent a promising natural alternative to the most commonly used oral wound dressing (COE-PAK).

  1. Soliman M, El-Barbary A, Elbattawy W, et al. Clinical comparison of topical application of platelet rich fibrin versus hyaluronic acid gel in pain management and wound healing after free gingival graft harvesting: A randomized controlled clinical trial. Egypt D J 2022;68:521:532. DOI: 10.21608/edj.2022.75589.1870.
  2. Kale T, Dani N, Patange T. Periodontal dressing. IOSR-JDMS 2014;13(3):94–98. DOI: 10.9790/0853-13349498.
  3. Marsh PD. Microbiology of dental plaque biofilms and their role in oral health and caries. Dent Clin North Am 2010;54(3):441–454. DOI: 10.1016/j.cden.2010.03.002.
  4. Hilton TJ, Ferracane JL, Mancl L. Comparison of CaOH with MTA for direct pulp capping: A PBRN randomized clinical trial. J Dent Res 2013;92(7 Suppl):16S–22S. DOI: 10.1177/0022034513484336.
  5. Paul W, Sharma CP. Alginates: Wound Dressings. Biomed Poly Biomat. Published online 2015:134–146.
  6. Freedman M, Stassen LF. Commonly used topical oral wound dressing materials in dental and surgical practice – a literature review. J Irish Dent Assoc 2013;59(4):190–195. PMID: 24156211.
  7. Kathariya R, Jain H, Jadhav T. To pack or not to pack: The current status of periodontal dressings. J Appl Biomat Func Mat 2015;13(2):e73–e86. DOI: 10.5301/jabfm.5000215.
  8. Shanmugam M, Kumar TSS, Arun KV, et al. Clinical and histological evaluation of two dressing materials in the healing of palatal wounds. J Indian Soc Periodontol 2010;14(4):241–244. DOI: 10.4103/0972-124X.76929.
  9. Bhusari BM, Vijay MR, Jayesh SN, et al. Review article periodontal dressing. Int J curr Res 2015;7(7):18578–18581.
  10. Lee KY, Mooney DJ. Alginate: Properties and biomedical applications. Prog Polym Sci 2012;37(1):106–126. DOI: 10.1016/j.progpolymsci.2011.06.003.
  11. Groeger S, Meyle J. Oral mucosal epithelial cells. Front Immun 2019;10(FEB):1–22. DOI: 10.3389/fimmu.2019.00208.
  12. Waasdorp M, Krom BP, Bikker FJ, et al. The bigger picture: Why oral mucosa heals better than skin. Biomolecules 2021;11(8):1165. DOI: 10.3390/biom11081165.
  13. Wiegand C, Heinze T, Christina HU. Comparative in vitro study on cytotoxicity, antimicrobial activity, and binding capacity for pathophysiological factors in chronic wounds of alginate and silver-containing alginate. Wound Repair Regen 2009;17:511–521. DOI: 10.1111/j.1524-475X.2009.00503.x.
  14. Norajit K, Ryu GIH. Preparation and properties of antibacterial alginate films incorporating extruded white Ginseng extract. J Food Proces Preserv 2011;35:387–393. DOI: 10.1111/j.1745-4549.2010.00479.x.
  15. Nazeri S, Ardakani EM, Babavalian H, et al. Evaluation of effectiveness of honey-based alginate hydrogel on wound healing in rat model. J Appl Biotechnol Rep 2015;2(3):293–297. Corpus ID: 198162676.
  16. Beyranvand F, Gharzi A, Abbaszadeh A, et al. Encapsulation of Satureja khuzistanica extract in alginate hydrogel accelerate wound healing in adult male rats. Inflamm Regen 2019;2:30–39. DOI: 10.1186/s41232-019-0090-4.
  17. Adera F, Yusuf Z, Desta M. Physicochemical properties and biological activities of garden cress (Lepidium sativum L.) seed and leaf oil extracts. Can J Infec Dis Med Micro. Published online 2022:1–8. DOI: 10.1155/2022/2947836.
  18. Al-asmari AK, Athar T, Al-shahrani HM, et al. Efficacy of Lepidium sativum against carbon tetra chloride induced hepatotoxicity and determination of its bioactive compounds by GC – MS. Toxicol R 2015;2:1319–1326. DOI: 10.1016/j.toxrep.2015.09.006.
  19. Jain T, Grover K. A comprehensive review on the nutritional and nutraceutical aspects of Garden Cress (Lepidium sativum Linn.). Indian Sect B Biol Sci. Published online 2016:2–9. DOI: 10.1007/s40011-016-0775-2.
  20. Mahassni SH, Khudauardi ER. A pilot study: The effects of an aqueous extract of Lepidium sativum seeds on levels of immune cells and body and organs weights in mice. J Ayurvedic Herb Med 2017;3(1):27–32. DOI: 10.31254/jahm.2017.3105.
  21. Abdel-baky ES. Efficiency of Lepidium sativum seeds in modulation the alterations in hematological parameters induced by sodium nitrite in rats. Egy J Hos Med 2019;74(2):396–402. DOI: 10.21608/EJHM.2019.23105.
  22. Alkahtani J, Elshikh MS, Almaary KS, et al. Anti-bacterial, anti-scavenging and cytotoxic activity of garden cress polysaccharides. Saudi J Bio Sci. Published online 2020:1–7. DOI: 10.1016/j.sjbs.2020. 08.014.
  23. Balgoon MJ. Garden Cress (Lepidium sativum) seeds ameliorated aluminum-induced alzheimer disease in rats through antioxidant, anti-inflammatory, and antiapoptotic effects. Neuropsychiatr Dis Treat 2023;19:865–878. DOI: 10.2147/NDT.S401740.
  24. Chatoui K, Harhar H, Kamli T El, et al. Chemical Composition and Antioxidant Capacity of Lepidium sativum Seeds from Four Regions of Morocco. Hindawi 2020;2020:32–35. DOI: 10.1155/2020/7302727.
  25. Alobaidi LA. Study the anticancer effect of Lepidium sativum leaves extract on squamous cell carcinoma (CAL-27) cell lines. J Nat Sci Res 2014;4(17):48–53.
  26. Shawki N, Kilani E, Hazzaa HH, et al. Clinical and radiographic assessment of single or combined treatment with Lepidium sativum and Alendronate of non-surgically treated chronic periodontitis in postmenopausal osteoporotic women. J Int Acad Periodontol 2019;21:20–28. PMID: 31522159.
  27. Kadkhodazadeh M, Baghani Z, Torshabi M, et al. In vitro comparison of biological effects of Coe-Pak and Reso-Pac periodontal dressings. J Oral Maxillofac Res 2017;8(1):1–11. DOI: 10.5037/jomr.2017.8103.
  28. Rafińska K, Pomastowski P, Rudnicka J, et al. Effect of solvent and extraction technique on composition and biological activity of Lepidium sativum extracts. Food Chem 2019;289:16–25. DOI: 10.1016/j.foodchem.2019.03.025.
  29. Saeed N, Khan MR, Shabbir M. Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complement Altern Med 2012;12:1–12. DOI: 10.1186/1472-6882-12-221.
  30. Rhim JW. Physical and mechanical properties of water resistant sodium alginate films. Leb Wiss Technol 2004;37:323–330. DOI: 10.1016/j.lwt.2003.09.008.
  31. Raval ND, Ravishankar B. Analgesic effect of Lepidium sativum Linn. (Chandrashura) in experimental animals. Pharmacol Res 2010;31(3):371–373. DOI: 10.4103/0974-8520.77163.
  32. Yahya F, Sfouq F, Mahmoud AZ, et al. Chemical composition and antimicrobial, antioxidant, and anti-inflammatory activities of Lepidium sativum seed oil. Saudi J Bio Sci 2019;26(5):1089–1092. DOI: 10.1016/j.sjbs.2018.05.007.
  33. Merakchi A, Bettayeb S, Drouiche N, et al. Cross-linking and modification of sodium alginate biopolymer for dye removal in aqueous solution. Polym Bull 2019;76(7):3535–3554. DOI: 10.1007/s00289-018-2557-x.
  34. Jonkman JEN, Cathcart JA, Xu F, et al. Migratory metrics of wound healing: A quantification approach for in vitro scratch assays. Front Oncol 2018;8(5):1–13. DOI: 10.3389/fonc.2018.00633.
  35. Vidal A, Mendieta Zerón H, Giacaman I, et al. A simple mathematical model for wound closure evaluation. J Amer Colleg Clin Wound Spec 2015;7(1–3):40–49. DOI: 10.1016/j.jccw.2016.07.002.
  36. Jonkman JEN, Cathcart JA, Xu F, et al. An introduction to the wound healing assay using live cell microscopy. Cell Adh Mig 2014;8(5): 440–451. DOI: 10.4161/cam.36224.
  37. Alawamleh HSK. Antibacterial effect of mouthwashes against selected bacteria. Sys Rev Pharm 2021;12(2):625–629. DOI: 10.31838/srp.2021.2.84.
  38. Gholami L, Ansari-Moghadam S, Sadeghi F, et al. Clinical and cytotoxic comparison of two periodontal dressings after periodontal flap surgery. World J Dent 2019;10(1):7–13. DOI: 10.5005/jp-journals-10015-1594.
  39. Rajaram DM, Laxman SD. Buccal mucoadhesive films: A review. Sys Rev Pharm 2017;8(1):31–38. DOI: 10.5530/srp.2017.1.7.
  40. Thirunavakarasu R, Nittla PP. Alginate impression material – A review. Drug Inven Today 2018;10(4):3556–3561.
  41. Dixit V, Iii JR, Kumar I, et al. Lepidium sativum: Bone healer in traditional medicine, an experimental validation study in rats. J Fam Med Prim Care 2020;9(2):812–818. DOI: 10.4103/jfmpc.jfmpc_761_19.
  42. Abiola TT, Auckloo N, Woolley JM, et al. Unravelling the photoprotection properties of garden cress sprout extract. Molecules 2021;26(24):14–19. DOI: 10.3390/molecules26247631.
  43. Truong DH, Nguyen DH, Ta NTA, et al. Evaluation of the use of different solvents for phytochemical constituents, antioxidants, and in vitro anti-inflammatory activities of Severinia buxifolia. J Food Qual. Published online 2019:1–9. DOI: 10.1155/2019/8178294.
  44. Al-Rubaye AF, Hameed IH, Kadhim MJ. A review: uses of gas chromatography-mass spectrometry (GC-MS) technique for analysis of bioactive natural compounds of some plants. Inter J Toxico Pharm Res 2017;9(01):1–6. DOI: 10.25258/ijtpr.v9i01.9042.
  45. Abu-Rumman AM. Gas chromatography-mass spectrometry (GC-MS) analysis of extracted oil from whole Garden Cress (Rashaad) seeds. Am J Eng Res 2018;7(4):1–8.
  46. Abdallah HM, Farag MA, Algandaby MM, et al. Osteoprotective activity and metabolite fingerprint via UPLC/MS and GC/MS of Lepidium sativum in ovariectomized rats. Nutrients 2020;12(7):1–20. DOI: 10.3390/nu12072075.
  47. Abasalizadeh F, Moghaddam SV, Alizadeh E, et al. Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting. J Bio Eng 2020;14(1):1–22. DOI: 10.1186/s13036-020-0227-7.
  48. Salama HE, Aziz MSA, Sabaa MW. Novel biodegradable and antibacterial edible films based on alginate and chitosan biguanidine hydrochloride. Int J Biol Macromol 2018;5:1–26. DOI:10.1016/j.ijbiomac.2018.04.183.
  49. Bialik-Was K, Pluta K, Malina D, et al. The effect of glycerin content in sodium alginate/poly(Vinyl alcohol)-based hydrogels for wound dressing application. Int J Molec Sci 2021;22(21):6–22. DOI: 10.3390/ijms222112022.
  50. Pereira R, Mendes A, Bártolo P. Alginate/Aloe vera hydrogel films for biomedical applications. Procedia CIRP 2013;5:210–215. DOI: 10.1016/j.procir.2013.01.042.
  51. Dadashzadeh A, Imani R, Moghassemi S, et al. Study of hybrid alginate/gelatin hydrogel incorporated niosomal Aloe vera capable of sustained release of Aloe vera as potential skin wound dressing. Polym Bull 2019;1:1–17. DOI: 10.1007/s00289-019-02753-8.
  52. Harishkumar M, Masatoshi Y, Hiroshi S, et al. Revealing the mechanism of in vitro wound healing properties of Citrus tamurana extract. BioMed Res Inter. Published online 2013:1–8. DOI: 10.1155/2013/963457.
  53. Alpar B, Geurtsen W, Leyhausen G. Cytocompatibility of periodontal dressing materials in fibroblast and primary human osteoblast-like cultures. Clin Oral Invest 1999;3:41–48. DOI: 10.1007/s007840050077.
  54. Ukeda H, Shimamura T, Tsubouchi M, et al. Spectrophotometric assay of superoxide anion formed in Maillard reaction based on highly water-soluble tetrazolium salt. Anal Sci 2002;18(10):1151–1154. DOI: 10.2116/analsci.18.1151.
  55. Sunzel B, Söderberg TA, Johansson A, et al. The protective effect of zinc on rosin and resin acid toxicity in human polymorphonuclear leukocytes and human gingival fibroblasts in vitro. J Biomed Mat Res 1997;37(1):20–28. DOI: 10.1002/(sici)1097-4636(199710)37:1<20::aid-jbm3>;2-l.
  56. Cao N, Chen XB, Schreyer DJ. Influence of calcium ions on cell survival and proliferation in the context of an alginate hydrogel. ISRN Chem Eng 2012;2012:1–9. DOI: 10.5402/2012/516461.
  57. Grada A, Otero-Vinas M, Prieto-Castrillo F, et al. Analysis of collective cell migration using the wound healing assay. J Invest Derma 2017;137(2):e11–e16. DOI: 10.1016/j.jid.2016.11.020.
  58. Bolla SR, Mohammed Al-Subaie A, Yousuf Al-Jindan R, et al. In vitro wound healing potency of methanolic leaf extract of Aristolochia saccata is possibly mediated by its stimulatory effect on collagen-1 expression. Heliyon 2019;5(5):e01648. DOI: 10.1016/j.heliyon.2019.e01648.
  59. Belal SA. Modulatory effect of linoleic and oleic acid on cell proliferation and lipid metabolism gene expressions in primary bovine satellite cells. Anim Cells Syst 2018;22(5):324–333. DOI: 10.1080/19768354.2018.1517824.
  60. Marcial-Medina C, Ordoñez-Moreno A, Gonzalez-Reyes C, et al. Oleic acid induces migration through a FFAR1/4, EGFR and AKT-dependent pathway in breast cancer cells. Endocr Conn 2019;8(3):252–265. DOI: 10.1530/EC-18-0543.
  61. Juma A. The effects of Lepidium sativum seeds on fracture-induced healing in rabbits. Gen Med 2007;9(2):23. PMID: 17955079.
  62. Zhang X, Huang C, Zhao Y, et al. Preparation and characterization of nanoparticle reinforced alginate fibers with high porosity for potential wound dressing application. RSC Adv 2017;7(62): 39349–39358. DOI: 10.1039/C7RA06103J.
  63. Ekawati ER, Darmanto W, Wahyuningsih SPA. Detection of Staphylococcus aureus in wound infection on the skin surface. Earth Env Sci 2020;456(1):6–10. DOI: 10.1088/1755-1315/456/1/012038.
  64. Asadpoor M, Ithakisiou GN, van Putten JPM, et al. Antimicrobial activities of alginate and chitosan oligosaccharides against Staphylococcus aureus and bacterial strains and culture conditions. Front Microbiol 2021;12:1–15. DOI: 10.3389/fmicb.2021.700605.
  65. Falana H, Nofal WN, Nakhleh H. A review article Lepidium sativum (Garden cress). Asian J Med Sci. Published online 2014:1–8.
  66. Besufekad Y. Antibacterial activity of Ethiopian Lepidium sativum L. against pathogenic bacteria. J Med Plants Res 2018;12:64–68. DOI: 10.5897/JMPR2017.6321.
  67. Akrayi HFS, Tawfeeq JD. Antibacterial activity of lepidium sativum and allium porrum extracts and juices against some gram positive and gram negative bacteria. Med J Islam Worlrld Acad Sci 2012; 20:10–16.
  68. Chandrasekaran M, Kannathasan K, Venkatesalu V. Antimicrobial activity of fatty acid methyl esters of some members of chenopodiaceae. Z Naturforsch C J Biosci 2008;63(5–6):331–336. DOI: 10.1515/znc-2008-5-604.
  69. Yoon BK, Jackman JA, Valle-González ER, et al. Antibacterial Free Fatty Acids and Monoglycerides: Biological Activities, Experimental Testing, and Therapeutic Applications. Int J Mol Sci 2018;19(4):1114. DOI: 10.3390/ijms19041114.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.