The Journal of Contemporary Dental Practice

Register      Login



Volume / Issue

Online First

Related articles

VOLUME 24 , ISSUE 12 ( December, 2023 ) > List of Articles


Effect of Boswellic Acid on Viability of Dental Pulp Stem Cells Compared to the Commonly Used Intracanal Medications: An In Vitro Study

Nouran Ahmad Amer, Manal Farouk Badawi, Mohamed Gamal Elbeltagi, Amany Elsaid Badr

Keywords : Boswellia serrata, Calcium hydroxide, Cell viability, Intracanal medications, Triple antibiotic paste

Citation Information : Amer NA, Badawi MF, Elbeltagi MG, Badr AE. Effect of Boswellic Acid on Viability of Dental Pulp Stem Cells Compared to the Commonly Used Intracanal Medications: An In Vitro Study. J Contemp Dent Pract 2023; 24 (12):957-966.

DOI: 10.5005/jp-journals-10024-3609

License: CC BY-NC 4.0

Published Online: 31-01-2024

Copyright Statement:  Copyright © 2023; The Author(s).


Aim: This study was aimed at evaluating the effect of acetyl-11-keto-β-boswellic acid (AKBA) on dental pulp stem cells (DPSCs) viability and proliferation to be used as a potential root canal medicament. Materials and methods: Dental pulp stem cells were isolated from human third molars. The phenotypic characterization of DPSCs was verified by flow cytometry analysis. The viability assay was performed using the methyl-thiazoltetrazolium (MTT) assay. Cells were treated with different concentration of triple antibiotic paste (TAP) and calcium hydroxide Ca(OH2) (5, 2.5, 1, 0.5, and 0.25 mg/mL), AKBA (10, 5, 1, 0.1, and 0.01 µM). All experiments were done in separate triplicate experiments. Results: Dental pulp stem cells were characterized by flow cytometry. Cells treated with Ca(OH)2 (1, 2.5, and 5 mg/mL) showed significantly reduced viability compared with the control cells (p < 0.05). Dental pulp stem cells treated with 1, 2.5, and 5 mg/mL TAP resulted in a significant decrease in viability (p < 0.05). Cells treated with AKBA in concentrations (1, 0.1, and 0.01 µM) demonstrated higher viability than the control group (p < 0.05), while AKBA in concentrations (5 and 10 µM) showed equal or decreased viability than the control group. (p > 0.05). Regarding cell density assay, AKBA showed significant increase in cell density after 5 and 7 days compared with cells medicated with TAP and Ca(OH)2 while TAP revealed marked reduction in cell density in all the tested intervals. Conclusion: Acetyl-11-keto-β-boswellic acid in lower concentrations (0.01, 0.1, and 1 µM) demonstrated superior cell viability than TAP and Ca(OH)2, and it may possess the potential to be an intracanal medicament in regenerative endodontics. Clinical significance: Studying the effect of different potential root canal medicaments and their capability to induce DPSCs proliferation might be of value. The influence of AKBA on the viability and proliferation of DPSCs tested in this study sheds light on its use as a potential intracanal medication especially in regenerative endodontics.

  1. General USPHSOotS, Dental NIo, Research C. Oral health in America: A report of the Surgeon General: US Public Health Service, Department of Health and Human Services; 2000.
  2. Hicks M, Flaitz C. Epidemiology of dental caries in the pediatric and adolescent population: A review of past and current trends. J Clin Pediatr Dent 1993;18(1):43–49. PMID: 8110613.
  3. Abbott P, Yu C. A clinical classification of the status of the pulp and the root canal system. Aust Dent J 2007;52:S17–S31. DOI: 10.1111/j.1834-7819.2007.tb00522.x.
  4. Zaleckiene V, Peciuliene V, Brukiene V, et al. Traumatic dental injuries: etiology, prevalence and possible outcomes. Stomatologija 2014;16(1):7–14. PMID: 24824054.
  5. Chen X, Bao ZF, Liu Y, et al. Regenerative endodontic treatment of an immature permanent tooth at an early stage of root development: A case report. J Endod 2013;39(5):719–722. DOI: 10.1016/j.joen.2012.12.023.
  6. Hargreaves KM, Diogenes A, Teixeira FB. Treatment options: Biological basis of regenerative endodontic procedures. Pediat Dent 2013;35(2):129–140. PMID: 23635981.
  7. Kim S, Malek M, Sigurdsson A, et al. Regenerative endodontics: A comprehensive review. Int Endod J 2018;51(12):1367–1388. DOI: 10.1111/iej.12954.
  8. Dhaimy S, Dhoum S, Amarir H, et al. Pulpo-periodontal regeneration: Management of partial failure revascularization. Case Rep Dent 2017;2017:8302039. DOI: 10.1155/2017/8302039.
  9. Bhandi S, Patil S, Boreak N, et al. Effect of different intracanal medicaments on the viability and survival of dental pulp stem cells. J Pers Med 2022;12(4):575. DOI: 10.3390/jpm12040575.
  10. Ruparel NB, Teixeira FB, Ferraz CC, et al. Direct effect of intracanal medicaments on survival of stem cells of the apical papilla. J Endod 2012;38(10):1372–1375. DOI: 10.1016/j.joen.2012.06.018.
  11. Nosrat A, Homayounfar N, Oloomi K. Drawbacks and unfavorable outcomes of regenerative endodontic treatments of necrotic immature teeth: A literature review and report of a case. J Endod 2012;38(10):1428–1434. DOI: 10.1016/j.joen.2012.06.025.
  12. Banchs F, Trope M. Revascularization of immature permanent teeth with apical periodontitis: New treatment protocol? J Endod 2004;30(4):196–200. DOI: 10.1097/00004770-200404000-00003.
  13. Petrino JA, Boda KK, Shambarger S, et al. Challenges in regenerative endodontics: a case series. J Endod 2010;36(3):536–541. DOI: 10.1016/j.joen.2009.10.006.
  14. Wigler R, Kaufman AY, Lin S, et al. Revascularization: A treatment for permanent teeth with necrotic pulp and incomplete root development. J Endod 2013;39(3):319–326. DOI: 10.1016/j.joen.2012.11.014.
  15. Chuensombat S, Khemaleelakul S, Chattipakorn S, et al. Cytotoxic effects and antibacterial efficacy of a 3-antibiotic combination: An in vitro study. J Endod 2013;39(6):813–819. DOI: 10.1016/j.joen.2012.11.041.
  16. Diogenes AR, Ruparel NB, Teixeira FB, et al. Translational science in disinfection for regenerative endodontics. J Endod 2014;40(4): S52–S57. DOI: 10.1016/j.joen.2014.01.015.
  17. Gronthos S, Mankani M, Brahim J, et al. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Nat Acad Sci 2000;97(25):13625–13630. DOI 10.1073/pnas.240309797.
  18. Valverde Y, Narayanan R, Alapati SB, et al. Poly (adenosine phosphate ribose) polymerase 1 inhibition enhances brain-derived neurotrophic factor secretion in dental pulp stem cell–derived odontoblastlike cells. J Endod 2018;44(7):1121–1125. DOI: 10.1016/j.joen.2018. 03.015.
  19. Gomaa MA, Elhawary YM, Badr AE. Glycyrrhizin enhances the proliferation of diabetic bone marrow-derived mesenchymal stem cells: a potential therapeutic agent in endodontic surgery. J Contemp Dent Pract 2023;24(7):494–499. DOI: 10.5005/jp-journals-10024-3536.
  20. Yamada M, Tsukimura N, Ikeda T, et al. N-acetyl cysteine as an osteogenesis-enhancing molecule for bone regeneration. Biomaterials 2013;34(26):6147–6156. DOI: 10.1016/j.biomaterials.2013.04.064.
  21. Son H-E, Kim E-J, Jang W-G. Curcumin induces osteoblast differentiation through mild-endoplasmic reticulum stress-mediated such as BMP2 on osteoblast cells. Life Sci 2018;193:34–39. DOI: 10.1016/j.lfs.2017.12.008.
  22. Taylor KM, Irving PM. Optimization of conventional therapy in patients with IBD. Nat Rev Gastroenterol Hepatol 2011;8(11):646–656. DOI: 10.1038/nrgastro.2011.172.
  23. Zhao W, Entschladen F, Liu H, et al. Boswellic acid acetate induces differentiation and apoptosis in highly metastatic melanoma and fibrosarcoma cells. Cancer Detect Prev 2003;27(1):67–75. DOI: 10.1016/s0361-090x(02)00170-8.
  24. Liu J-J, Nilsson Å, Oredsson S, et al. Boswellic acids trigger apoptosis via a pathway dependent on caspase-8 activation but independent on Fas/Fas ligand interaction in colon cancer HT-29 cells. Carcinogenesis 2002;23(12):2087–2093. DOI: 10.1093/carcin/23.12.2087.
  25. Jaroš P, Timkina E, Michailidu J, et al. Boswellic acids as effective antibacterial antibiofilm agents. Molecules 2022;27(12):3795. DOI: 10.3390/molecules27123795.
  26. Bai F, Chen X, Yang H, et al. Acetyl-11-Keto-β-boswellic acid promotes osteoblast differentiation by inhibiting tumor necrosis factor-α and nuclear factor-κB activity. J Craniofacial Surg 2018;29(7):1996–2002. DOI: 10.1097/SCS.0000000000004691.
  27. Lovelace TW, Henry MA, Hargreaves KM, et al. Evaluation of the delivery of mesenchymal stem cells into the root canal space of necrotic immature teeth after clinical regenerative endodontic procedure. J Endodont 2011;37(2):133–138. DOI: 10.1016/j.joen.2010.10.009.
  28. Chen MH, Chen KL, Chen CA, et al. Responses of immature permanent teeth with infected necrotic pulp tissue and apical periodontitis/abscess to revascularization procedures. Int Endodont J 2012;45(3):294–305. DOI: 10.1111/j.1365-2591.2011.01978.x.
  29. Thomson A, Kahler B. Regenerative endodontics–biologically-based treatment for immature permanent teeth: A case report and review of the literature. Aust Dent J 2010;55(4):446–452. DOI: 10.1111/j.1834-7819.2010.01268.x.
  30. Suchánek J, Soukup T, Ivancakova R, et al. Human dental pulp stem cells-isolation and long term cultivation. Acta Medica (Hradec Kralove) 2007;50(3):195–201. PMID: 18254273.
  31. Bakopoulou A, Georgopoulou A, Grivas I, et al. Dental pulp stem cells in chitosan/gelatin scaffolds for enhanced orofacial bone regeneration. Dent Mater 2019;35(2):310–327. DOI: 10.1016/
  32. Wang J, Liu X, Jin X, et al. The odontogenic differentiation of human dental pulp stem cells on nanofibrous poly (L-lactic acid) scaffolds in vitro and in vivo. Acta Biomater 2010;6(10):3856–3863. DOI: 10.1016/j.actbio.2010.04.009.
  33. ISO. Biological evaluation of medical devices–part 5: Tests for in vitro cytotoxicity. Geneva, Switzerland: International Organization for Standarization; 2009.
  34. Asghari Sana F, Çapkın Yurtsever M, Kaynak Bayrak G, et al. Spreading, proliferation and differentiation of human dental pulp stem cells on chitosan scaffolds immobilized with RGD or fibronectin. Cytotechnology 2017;69(4):617–630. DOI: 10.1007/s10616-017- 0072-9.
  35. Verma P, Nosrat A, Kim J, et al. Effect of residual bacteria on the outcome of pulp regeneration in vivo. J Dent Res 2017;96(1):100–106. DOI: 10.1177/0022034516671499.
  36. Othman NM, Elhawary YM, Elbeltagy MG, et al. The effect of Rosmarinus officinalis as a potential root canal medication on the viability of dental pulp stem cells. J Contemp Dent Pract 2023;24: 623–631.
  37. Atari M, Barajas M, Hernández-Alfaro F, et al. Isolation of pluripotent stem cells from human third molar dental pulp. Histol Histopathol 26(8):1057–1070. DOI: 10.14670/HH-26.1057.
  38. Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006;8(4):315–317. DOI: 10.1080/14653240600855905.
  39. Grela E, Kozłowska J, Grabowiecka A. Current methodology of MTT assay in bacteria – A review. Acta Histochem 2018;120(4):303–311. DOI: 10.1016/j.acthis.2018.03.007.
  40. Saoud TMA, Zaazou A, Nabil A, et al. Clinical and radiographic outcomes of traumatized immature permanent necrotic teeth after revascularization/revitalization therapy. J Endod 2014;40(12): 1946–1952. DOI: 10.1016/j.joen.2014.08.023.
  41. Chueh LH, Huang GTJ. Immature teeth with periradicular periodontitis or abscess undergoing apexogenesis: A paradigm shift. J Endod 2006;32(12):1205–1213. DOI: 10.1016/j.joen.2006.07.010.
  42. Berkhoff JA, Chen PB, Teixeira FB, et al. Evaluation of triple antibiotic paste removal by different irrigation procedures. J Endod 2014;40(8):1172–1177. DOI: 10.1016/j.joen.2013.12.027.
  43. Camargo S, Camargo C, Hiller KA, et al. Cytotoxicity and genotoxicity of pulp capping materials in two cell lines. International Endodontic Journal 2009;42(3):227–237. DOI: 10.1111/j.1365–2591.2008.01506.x.
  44. Guven EP, Yalvac ME, Sahin F, et al. Effect of dental materials calcium hydroxide–containing cement, mineral trioxide aggregate, and enamel matrix derivative on proliferation and differentiation of human tooth germ stem cells. Journal of Endodontics 2011;37(5): 650–656. DOI: 10.1016/j.joen.2011.02.008.
  45. Ji YM, Jeon SH, Park J-Y, et al. Dental stem cell therapy with calcium hydroxide in dental pulp capping. Tissue Engineering Part A 2010;16(6):1823–1833. DOI: 10.1016/j.bcp.2011.09.026.
  46. Alghilan M, Windsor LJ, Palasuk J, et al. Attachment and proliferation of dental pulp stem cells on dentine treated with different regenerative endodontic protocols. Int Endod J 2017;50(7):667–675. DOI: 10.1111/iej.12669.
  47. Sabrah AH, Yassen GH, Liu WC, et al. The effect of diluted triple and double antibiotic pastes on dental pulp stem cells and established Enterococcus faecalis biofilm. Clin Oral Invest 2015;19:2059–2066. DOI: 10.1007/s00784-015-1423-6.
  48. McIntyre PW, Wu JL, Kolte R, et al. The antimicrobial properties, cytotoxicity, and differentiation potential of double antibiotic intracanal medicaments loaded into hydrogel system. Clin Oral Invest 2019;23:1051–1059. DOI: 10.1007/s00784-018-2542-7.
  49. Althumairy RI, Teixeira FB, Diogenes A. Effect of dentin conditioning with intracanal medicaments on survival of stem cells of apical papilla. J Endod 2014;40(4):521–525. DOI: 10.1016/j.joen.2013.11.008.
  50. Latham J, Fong H, Jewett A, et al. Disinfection efficacy of current regenerative endodontic protocols in simulated necrotic immature permanent teeth. J Endodont 2016;42(8):1218–1225. DOI: 10.1016/j.joen.2016.05.004.
  51. Pagonis TC, Chen J, Fontana CR, et al. Nanoparticle-based endodontic antimicrobial photodynamic therapy. J Endod 2010;36(2):322–328. DOI: 10.1016/j.joen.2009.10.011.
  52. Selis D, Pande Y, Smoczer C, et al. Cytotoxicity and genotoxicity of a new intracanal medicament, 2-hydroxyisocaproic acid–An in vitro study. J Endod 2019;45(5):578–583. DOI: 10.1016/j.joen.2019.01.012.
  53. Labban N, Yassen GH, Windsor LJ, et al. The direct cytotoxic effects of medicaments used in endodontic regeneration on human dental pulp cells. Dent Traumatol 2014;30(6):429–434. DOI: 10.1111/edt.12108.
  54. Shibata S. A drug over the millennia: Pharmacognosy, chemistry, and pharmacology of licorice. Yakugaku Zasshi 2000;120(10):849–862. DOI: 10.1248/yakushi1947.120.10_849.
  55. Taherzadeh D, Baradaran Rahimi V, Amiri H, et al. Acetyl-11-Keto-β-boswellic acid (AKBA) prevents lipopolysaccharide-induced inflammation and cytotoxicity on H9C2 cells. Evid-Based Compl Alternat Med 2022;2022: 2620710. DOI: 10.1155/2022/2620710.
  56. Sabina EP, Indu H, Rasool M. Efficacy of boswellic acid on lysosomal acid hydrolases, lipid peroxidation and anti–oxidant status in gouty arthritic mice. Asian Pacif J Trop Biomed 2012;2(2):128–133. DOI: 10.1016/S2221-1691(11)60206-2.
  57. Ahmad S, Khan SA, Kindelin A, et al. Acetyl-11-keto-β-boswellic acid (AKBA) attenuates oxidative stress, inflammation, complement activation and cell death in brain endothelial cells following OGD/reperfusion. Neuromol Med 2019;21(4):505–516. DOI: 10.1007/s12017-019-08569-z.
  58. Atashi F, Modarressi A, Pepper MS. The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: A review. Stem Cells Dev 2015;24(10):1150–1163. DOI: 10.1089/scd.2014.0484.
  59. Chan C, Mong M, Liu W, et al. Three pentacyclic triterpenes protect H9c2 cardiomyoblast cells against high-glucose-induced injury. Free Rad Res 2014;48(4):402–411. PMID: 24393047.
  60. Al-Dhubiab BE, Patel SS, Morsy MA, et al. The beneficial effect of boswellic acid on bone metabolism and possible mechanisms of action in experimental osteoporosis. Nutrients 2020;12(10):3186. DOI: 10.3390/nu12103186.
  61. Bertocchi M, Isani G, Medici F, et al. Anti-inflammatory activity of Boswellia serrata extracts: An in vitro study on porcine aortic endothelial cells. Oxidative Med Cell Long 2018;2018. DOI: 10.1155/2018/2504305.
  62. Ni Y, Teng T, Li R, et al. TNFα alters occludin and cerebral endothelial permeability: Role of p38MAPK. PloS one 2017;12(2):e0170346. DOI: 10.1371/journal.pone.0170346.
  63. Zhou P, Lu S, Luo Y, et al. Attenuation of TNF-α-induced inflammatory injury in endothelial cells by ginsenoside Rb1 via inhibiting NF-κB, JNK and p38 signaling pathways. Front Pharmacol 2017;8:464. DOI: 10.3389/fphar.2017.00464.
  64. Roy S, Khanna S, Krishnaraju AV, et al. Regulation of vascular responses to inflammation: Inducible matrix metalloproteinase-3 expression in human microvascular endothelial cells is sensitive to antiinflammatory Boswellia. Antioxidants Redox Signal 2006;8 (3–4):653–660. DOI: 10.1089/ars.2006.8.653.
  65. Henkel A, Kather N, Mönch B, et al. Boswellic acids from frankincense inhibit lipopolysaccharide functionality through direct molecular interference. Biochem Pharmacol 2012;83(1):115–121. DOI: 10.1016/j.bcp.2011.09.026.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.