An In Vitro Comparative Evaluation of Conventional and Novel Thymus vulgaris Derived Herbal Disinfectant Solutions against Pathogenic Biofilm on Maxillofacial Silicones and Its Impact on Color Stability
Citation Information :
Peter M, Kanathila H, Bembalagi M, Santhosh VN, Vas R, Patil S, Roy TR, Monsy M, Gopu BN, Chindak S. An In Vitro Comparative Evaluation of Conventional and Novel Thymus vulgaris Derived Herbal Disinfectant Solutions against Pathogenic Biofilm on Maxillofacial Silicones and Its Impact on Color Stability. J Contemp Dent Pract 2023; 24 (12):967-973.
Aim: This study aims to assess the antimicrobial efficacy and impact on color stability of Thymus (T.) vulgaris solution compared to conventional disinfectants on maxillofacial silicones.
Materials and methods: Various solutions were evaluated, including T. vulgaris solutions at 5 and 10%, saline (control), chlorhexidine (4%), and soap water. The substrates were MDX4-4210 silicone elastomers, and the microorganisms tested were Candida (C.) albicans and Staphylococcus (S.) aureus. The viability of microorganisms was determined through an 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) reduction assay, and color stability was measured using a spectrophotometer with X-Rite Europe software. Statistical analysis was performed using the Kruskal–Wallis test, Mann–Whitney U post hoc test, and Wilcoxon Signed Rank test.
Results: Soap water demonstrated superior disinfectant action against both microorganisms, while T. vulgaris solutions at 5 and 10% exhibited comparable antimicrobial efficacy. Chlorhexidine and 10% T. vulgaris solution showed minimal color changes in the silicone material. In contrast, soap water and the 5% T. vulgaris solution resulted in clinically unacceptable color alterations.
Conclusion: This study underscores the potential of T. vulgaris as an herbal disinfectant for combating microbial biofilms on maxillofacial silicones, particularly at concentrations of 5 and 10%. The importance of maintaining color stability is emphasized, with Chlorhexidine and the 10% T. vulgaris solution demonstrating effective preservation of esthetics. These findings suggest the viability of considering T. vulgaris as an alternative disinfectant in clinical settings for maxillofacial silicone prostheses.
Clinical significance: Maxillofacial silicones are vital in restoring aesthetic features for individuals with facial trauma, congenital deformities, or post-surgical interventions. Yet, biofilm-related infections jeopardize their durability and visual integrity. Clinically, T. vulgaris signifies a potential advance in prosthodontic care, offering valuable insights for improving antimicrobial performance and aesthetic durability in maxillofacial prostheses.
Gupta P, Deshpande S, Radke U, et al. The color stability of maxillofacial silicones: A systematic review and meta-analysis. J Indian Prosthodont Soc 2021;21(2):138–149. DOI: 10.4103/jips.jips_253_19.
Hatamleh MM, Haylock C, Watson J, et al. Maxillofacial prosthetic rehabilitation in the UK: A survey of maxillofacial prosthetists’ and technologists’ attitudes and opinions. Int J Oral Maxillofac Surg 2010;39(12):1186–1192. DOI: 10.1016/j.ijom.2010.08.002.
Chotprasert N, Shrestha B, Sipiyaruk K. Effects of disinfection methods on the color stability of precolored and hand-colored maxillofacial silicone: An in vitro study. Int J Biomater 2022;2022:7744744. DOI: 10.1155/2022/7744744.
Kumar A, Seenivasan MK, Inbarajan A. A literature review on biofilm formation on silicone and poymethyl methacrylate used for maxillofacial prostheses. Cureus 2021;13(11):e20029. DOI: 10.7759/cureus.20029.
Cevik P, Yildirim-Bicer AZ. Effect of different types of disinfection solution and aging on the hardness and colour stability of maxillofacial silicone elastomers. Int J Artif Organs 2018;41(2):108–114. DOI: 10.5301/ijao.5000659.
Cevik P, Akca G, Asar NV, et al. Antimicrobial effects of nano titanium dioxide and disinfectants on maxillofacial silicones. J Prosthet Dent 2023;S0022-3913(23)00135-X. DOI: 10.1016/j.prosdent.2023.03.001.
Mat-Rani S, Chotprasert N, Srimaneekarn N, et al. Fungicidal effect of lemongrass essential oil on candida albicans biofilm pre-established on maxillofacial silicone specimens. J Int Soc Prev Community Dent 2021;11(5):525–530. DOI: 10.4103/jispcd.JISPCD_63_21.
Babu AS, Manju V, Gopal VK. Effect of chemical disinfectants and accelerated aging on maxillofacial silicone elastomers: An in vitro study. Indian J Dent Res 2018;29(1):67–73. DOI: 10.4103/ijdr.IJDR_272_16.
Doghish AS, Shehabeldine AM, El-Mahdy HA, et al. Thymus vulgaris oil nanoemulsion: synthesis, characterization, antimicrobial and anticancer activities. Mol Basel Switz 2023;28(19):6910. DOI: https://doi.org/10.3390/molecules28196910.
Hossain MA, AL-Raqmi KAS, AL-Mijizy ZH, et al. Study of total phenol, flavonoids contents and phytochemical screening of various leaves crude extracts of locally grown Thymus vulgaris. Asian Pac J Trop Biomed 2013;3(9):705–710. DOI: 10.1016/S2221-1691(13)60142-2.
Banerjee P, Mukherjee S, Bera K, et al. Polysaccharides from Thymus vulgaris leaf: Structural features, antioxidant activity and interaction with bovine serum albumin. Int J Biol Macromol 2019;125:580–587. DOI: 10.1016/j.ijbiomac.2018.11.117.
Karpiński TM, Ożarowski M, Seremak-Mrozikiewicz A, et al. Anti-candida and antibiofilm activity of selected lamiaceae essential oils. Front Biosci (Landmark Ed) 2023;28(2):28. DOI: 10.31083/j.fbl2802028.
Sateriale D, Forgione G, De Cristofaro GA, et al. Towards green strategies of food security: Antibacterial synergy of essential oils from thymus vulgaris and syzygium aromaticum to inhibit escherichia coli and staphylococcus aureus pathogenic food isolates. Micro 2022;10(12):2446. DOI: 10.3390/microorganisms10122446.
Naseri N, Kalantari Khandani A, Baherimoghadam T, et al. The effect of thymus vulgaris essential oil and chlorhexidine on candida albicans accumulated on removable orthodontic appliance: A clinical trial. J Dent Shiraz Iran 2022;23(1 Suppl):190–197. DOI: 10.30476/DENTJODS.2021.89317.1404.
Oliveira AS, Rolo J, Gaspar C, et al. Chemical characterization and bioactive potential of Thymus×citriodorus (Pers.) Schreb. preparations for anti-acne applications: Antimicrobial, anti-biofilm, anti-inflammatory and safety profiles. J Ethnopharmacol 2022;287:114935. DOI: 10.1016/j.jep.2021.114935.
Mehta S, Nandeeshwar DB. A spectrophotometric analysis of extraoral aging conditions on the color stability of maxillofacial silicone. J Indian Prosthodont Soc 2017;17(4):355–360. DOI: 10.4103/jips.jips_87_17.
Guiotti AM, Cunha BG, Paulini MB, et al. Antimicrobial activity of conventional and plant-extract disinfectant solutions on microbial biofilms on a maxillofacial polymer surface. J Prosthet Dent 2016;116(1):136–143. DOI: 10.1016/j.prosdent.2015.12.014.
Chamaria A, Aras MA, Chitre V, et al. Effect of chemical disinfectants on the color stability of maxillofacial silicones: An in vitro study. J Prosthodont 2019;28(2):e869–e872. DOI: 10.1111/jopr.12768.
Fani M, Kohanteb J. In vitro antimicrobial activity of thymus vulgaris essential oil against major oral pathogens. J Evid-Based Complement Altern Med 2017;22(4):660–666. DOI: 10.1177/2156587217 700772.
Amatiste S, Sagrafoli D, Giacinti G, et al. Antimicrobial activity of essential oils against Staphylococcus aureus in fresh sheep cheese. Ital J Food Saf 2014;3(3):1696. DOI: 10.4081/ijfs.2014.1696.
Chong WX, Lai YX, Choudhury M, et al. Efficacy of incorporating silver nanoparticles into maxillofacial silicone against Staphylococcus aureus, Candida albicans, and polymicrobial biofilms. J Prosthet Dent 2022;128(5):1114–1120. DOI: 10.1016/j.prosdent.2021.01.010.
de Azevedo MN, Marques NT, Fonseca MFL, et al. Disinfectant effects of Brazilian green propolis alcohol solutions on the Staphylococcus aureus biofilm of maxillofacial prosthesis polymers. J Prosthet Dent 2022;128(6):1405–1411. DOI: 10.1016/j.prosdent.2021.03.025.
Jafri H, Ahmad I. Thymus vulgaris essential oil and thymol inhibit biofilms and interact synergistically with antifungal drugs against drug resistant strains of Candida albicans and Candida tropicalis. J Mycol Méd 2020;30(1):100911. DOI: 10.1016/j.mycmed.2019. 100911.
Kavianirad F, Bahador N, Naseri N, et al. The antifungal effect of thymus vulgaris on isolated candida albicans from the surface of removable orthodontic appliances. Herb Med J Herb Med J 2019;4(2):55–64. DOI: https://doi.org/10.22087/hmj.v4i2.718.
Galgano M, Capozza P, Pellegrini F, et al. Antimicrobial activity of essential oils evaluated in vitro against escherichia coli and staphylococcus aureus. Antibiotics (Basel) 2022;11(7):979. DOI: 10.3390/antibiotics11070979.
Kot B, Wierzchowska K, Grużewska A, et al. The effects of selected phytochemicals on biofilm formed by five methicillin-resistant Staphylococcus aureus. Nat Prod Res 2018;32(11):1299–1302. DOI: 10.1080/14786419.2017.1340282.
Vaillancourt K, LeBel G, Yi L, et al. In vitro antibacterial activity of plant essential oils against Staphylococcus hyicus and Staphylococcus aureus, the causative agents of exudative epidermitis in pigs. Arch Microbiol 2018;200(7):1001–1007. DOI: 10.1007/s00203-018-1512-4.
van der Waal SV, Oonk CAM, Nieman SH, et al. Additional disinfection with a modified salt solution in a root canal model. J Dent 2015;43(10):1280–1284. DOI: 10.1016/j.jdent.2015.07.015.
Alqarni H, Jamleh A, Chamber MS. Chlorhexidine as a disinfectant in the prosthodontic practice: A comprehensive review. Cureus 2022;14(10):e30566. DOI: 10.7759/cureus.30566.
Cantor R, Webber RL, Stroud L, et al. Methods for evaluating prosthetic facial materials. J Prosthet Dent 1969;21(3):324–332. DOI: 10.1016/0022-3913(69)90295-9.
Goiato MC, Zucolotti BCR, Mancuso DN, et al. Care and cleaning of maxillofacial prostheses. J Craniofac Surg 2010;21(4):1270–1273. DOI: 10.1097/SCS.0b013e3181e1b431.
Mancuso DN, Goiato MC, Santos DM dos. Color stability after accelerated aging of two silicones, pigmented or not, for use in facial prostheses. Braz Oral Res 2009;23(2):144–148. DOI: 10.1590/s1806-83242009000200009.
Lemon JC, Chambers MS, Jacobsen ML, et al. Color stability of facial prostheses. J Prosthet Dent 1995;74(6):613–618. DOI: 10.1016/s0022-3913(05)80314-2.
Haug SP, Andres CJ, Moore BK. Color stability and colorant effect on maxillofacial elastomers. Part III: Weathering effect on color. J Prosthet Dent 1999;81(4):431–438. DOI: 10.1016/s0022-3913(99) 80010-9.
Eleni PN, Krokida MK, Polyzois GL, et al. Effect of different disinfecting procedures on the hardness and color stability of two maxillofacial elastomers over time. J Appl Oral Sci 2013;21(3):278–283. DOI: 10.1590/1679-775720130112.
Hatamleh MM, Watts DC. Effect of extraoral aging conditions on color stability of maxillofacial silicone elastomer. J Prosthodont 2010;19(7):536–543. DOI: 10.1111/j.1532-849X.2010.00627.x.
Polyzois GL, Tarantili PA, Frangou MJ, et al. Physical properties of a silicone prosthetic elastomer stored in simulated skin secretions. J Prosthet Dent 2000;83(5):572–577. DOI: 10.1016/s0022-3913(00) 70017-5.