The Journal of Contemporary Dental Practice

Register      Login



Volume / Issue

Online First

Related articles

VOLUME 24 , ISSUE 3 ( March, 2023 ) > List of Articles


Effect of Heated Sodium Hypochlorite Irrigant on Structural Changes and Microhardness of Radicular Dentin: An In Vitro Study

ST Shruthi

Keywords : Fourier-transform infrared spectroscopy, Heated sodium hypochlorite, Intracanal heating, Root dentin microhardness, Root canal irrigant

Citation Information : Shruthi S. Effect of Heated Sodium Hypochlorite Irrigant on Structural Changes and Microhardness of Radicular Dentin: An In Vitro Study. J Contemp Dent Pract 2023; 24 (3):176-180.

DOI: 10.5005/jp-journals-10024-3467

License: CC BY-NC 4.0

Published Online: 25-05-2023

Copyright Statement:  Copyright © 2023; The Author(s).


Aim: This study is aimed to evaluate the combined effect of sodium hypochlorite at varied concentrations and temperatures on radicular dentin microhardness along with its surface structural changes using an FTIR spectrometer. Materials and methods: Mandibular premolars were cleaned and shaped up to F3 Protaper gold rotary files, after which they were subjected to five experimental conditions – group I – neutral saline as negative control, group II – 3% NaOCl solution, group III – 5% NaOCl solution, group IV – 3% intracanal-heated NaOCl solution, and group V – 5% intracanal-heated NaOCl solution. Following this, the microhardness of radicular dentin at 100 µm and 300 µm from the canal lumen and Fourier-transform infrared (FTIR) spectroscopic analysis were performed. Results: The results showed that intracanal-heated sodium hypochlorite group reduced root dentin microhardness at 300 µm than its nonheated counterpart. No difference in microhardness values was observed between 3% intracanal-heated and room-temperature sodium hypochlorite groups at 100 µm. Reduction in amide/phosphate ratio was noted in all the groups treated with sodium hypochlorite irrespective of temperature and concentration. Conclusion: Thus, considering that the level of alteration in physical and structural changes of root dentin with or without heating is insignificant, intracanal-heated low-concentration sodium hypochlorite solutions could be used as an alternative to high-concentration sodium hypochlorite. Clinical significance: Intracanal-heated low-concentration sodium hypochlorite enables the clinicians to achieve maximum disinfection while keeping the structural and physical properties of the dentin similar to room-temperature sodium hypochlorite.

  1. Walton RE, Torabinejad M. Endodontics: Principles and Practice. 4th ed. Saunders/Elsevier; 2009.
  2. Abou-Rass M, Piccinino MV. The effectiveness of four clinical irrigation methods on the removal of root canal debris. Oral Surg Oral Med Oral Pathol 1982;54(3):323–328. DOI: 10.1016/0030-4220(82)90103-7.
  3. Briseno BM, Wirth R, Hamm G, et al. Efficacy of different irrigation methods and concentrations of root canal irrigation solutions on bacteria in the root canal. Endod Dent Traumatol 1992;8(1):6–11. DOI: 10.1111/j.1600-9657.1992.tb00218.x.
  4. Kaplan AE, Picca M, Gonzalez MI, et al. Antimicrobial effect of six endodontic sealers: An in vitro evaluation. Endod Dent Traumatol 1999;15(1):42–45. DOI: 10.1111/j.1600-9657.1999.tb00748.x.
  5. Byström A, Sundqvist G. Bacteriologic evaluation of the efficacy of mechanical root canal instrumentation in endodontic therapy. Scand J Dent Res 1981;89(4):321–328. DOI: 10.1111/j.1600-0722.1981.tb01689.x.
  6. Iandolo A, Amato M, Dagna A, et al. Intracanal heating of sodium hypochlorite: Scanning electron microscope evaluation of root canal walls. J Conserv Dent 2018;21(5):569–573. DOI: 10.4103/JCD.JCD_245_18.
  7. Barbakow F, Lutz F, Toth L. Materials and technics in root canal treatments in Switzerland--A determination of their status. Schweiz Monatsschrift Zahnmed 1995;105(10):1265–1271. PMID: 7481671.
  8. Dakin HD. On the use of certain antiseptic substances in the treatment of infected wounds. Br Med J 1915;2(2852):318–320. DOI: 10.1136/bmj.2.2852.318.
  9. Siqueira JF, Batista MM, Fraga RC, et al. Antibacterial effects of endodontic irrigants on black-pigmented Gram-negative anaerobes and facultative bacteria. J Endod 1998;24(6):414–416. DOI: 10.1016/S0099-2399(98)80023-X.
  10. Gomes BP, Ferraz CC, Vianna ME, et al. In vitro antimicrobial activity of several concentrations of sodium hypochlorite and chlorhexidine gluconate in the elimination of Enterococcus faecalis. Int Endod J 2001;34(6):424–428. DOI: 10.1046/j.1365-2591.2001.00410.x.
  11. Berber VB, Gomes BPFA, Sena NT, et al. Efficacy of various concentrations of NaOCl and instrumentation techniques in reducing Enterococcus faecalis within root canals and dentinal tubules. Int Endod J 2006;39(1):10–17. DOI: 10.1111/j.1365-2591.2005.01038.x.
  12. Hülsmann M, Hahn W. Complications during root canal irrigation–literature review and case reports. Int Endod J 2000;33(3):186–193. DOI: 10.1046/j.1365-2591.2000.00303.x.
  13. Giardino L, Mohammadi Z, Beltrami R, et al. Influence of temperature on the antibacterial activity of sodium hypochlorite. Braz Dent J 2016;27(1):32–36. DOI: 10.1590/0103-6440201600627.
  14. Rathore V, Moogi P, Bandekar S, et al. Antimicrobial efficacy of intracanal and extracanal heated sodium hypochlorite against Enterococcus faecalis: An in vitro study. Endodontology 2020;32(3):112. DOI: 10.4103/endo.endo_21_20.
  15. Saleh AA, Ettman WM. Effect of endodontic irrigation solutions on microhardness of root canal dentine. J Dent 1999;27(1):43–46. DOI: 10.1016/s0300-5712(98)00018-9.
  16. Slutzky-Goldberg I, Liberman R, Heling I. The effect of instrumentation with two different file types, each with 2.5% NaOCl irrigation on the microhardness of root dentin. J Endod 2002;28(4):311–312. DOI: 10.1097/00004770-200204000-00012.
  17. Sim TP, Knowles JC, Ng YL, et al. Effect of sodium hypochlorite on mechanical properties of dentine and tooth surface strain. Int Endod J 2001;34(2):120–132. DOI: 10.1046/j.1365-2591.2001.00357.x.
  18. Slutzky-Goldberg I, Maree M, Liberman R, et al. Effect of sodium hypochlorite on dentin microhardness. J Endod 2004;30(12):880–882. DOI: 10.1097/01.don.0000128748.05148.1e.
  19. Arul B, Suresh N, Sivarajan R, et al. Influence of volume of endodontic irrigants used in different irrigation techniques on root canal dentin microhardness. Indian J Dent Res 2021;32(2):230–235.
  20. Xu H, Zheng Q, Shao Y, et al. The effects of ageing on the biomechanical properties of root dentine and fracture. J Dent 2014;42(3):305–311. DOI: 10.1016/j.jdent.2013.11.025.
  21. Grigoratos D, Knowles J, Ng YL, et al. Effect of exposing dentine to sodium hypochlorite and calcium hydroxide on its flexural strength and elastic modulus. Int Endod J 2001;34(2):113–119. DOI: 10.1046/j.1365-2591.2001.00356.x.
  22. Sakae T, Mishima H, Kozawa Y. Changes in bovine dentin mineral with sodium hypochlorite treatment. J Dent Res 1988;67(9):1229–1234. DOI:10.1177/00220345880670091601.
  23. Cunningham WT, Balekjian AY. Effect of temperature on collagen-dissolving ability of sodium hypochlorite endodontic irrigant. Oral Surg, Oral Med, Oral Pathol 1980;49(2):175–177. DOI: 10.1016/0030-4220(80)90313-8.
  24. Raphael D, Wong TA, Moodnik R, et al. The effect of temperature on the bactericidal efficiency of sodium hypochlorite. J Endod 1981;7(7):330–334. DOI: 10.1016/S0099-2399(81)80101-X.
  25. De Santis R, Iaculli F, Lodato V, et al. The efficacy of selected sodium hypochlorite heating methods for increasing and maintaining its intracanal temperature – An ex vivo study. Appl Sci 2022;12(2):891. DOI: 10.3390/app12020891.
  26. Fuentes V, Toledano M, Osorio R, et al. Microhardness of superficial and deep sound human dentin. J Biomed Mater Res A 2003;66(4): 850–853. DOI: 10.1002/jbm.a.10064.
  27. Pashley D, Okabe A, Parham P. The relationship between dentin microhardness and tubule density. Endod Dent Traumatol 1985;1(5):176–179. DOI: 10.1111/j.1600-9657.1985.tb00653.x.
  28. Zou L, Shen Y, Li W, et al. Penetration of sodium hypochlorite into dentin. J Endod 2010;36(5):793–796. DOI: 10.1016/j.joen.2010.02.005.
  29. Oyarzún A, Cordero AM, Whittle M. Immunohistochemical evaluation of the effects of sodium hypochlorite on dentin collagen and glycosaminoglycans. J Endod 2002;28(3):152–156. DOI: 10.1097/00004770-200203000-00002.
  30. Zhang K, Tay FR, Kim YK, et al. The effect of initial irrigation with two different sodium hypochlorite concentrations on the erosion of instrumented radicular dentin. Dent Mater 2010;26(6):514–523. DOI: 10.1016/
  31. Di Renzo M, Ellis TH, Sacher E, et al. A photoacoustic FTIRS study of the chemical modifications of human dentin surfaces: I. Demineralization. Biomaterials 2001;22(8):787–792. DOI: 10.1016/s0142-9612(00)00240-4.
  32. Wang X, Bank RA, TeKoppele JM, et al. The role of collagen in determining bone mechanical properties. J Orthop Res 2001;19(6):1021–1026. DOI:1 0.1016/S0736-0266(01)00047-X.
  33. Miles CA, Ghelashvili M. Polymer-in-a-box mechanism for the thermal stabilization of collagen molecules in fibers. Biophys J 1999;76(6):3243–3252. DOI: 10.1016/S0006-3495(99)77476-X.
  34. Hayashi M, Furuya Y, Minoshima K, et al. Effects of heating on the mechanical and chemical properties of human dentin. Dent Mater 2012;28(4):385–391. DOI: 10.1016/
  35. Eriksson AR, Albrektsson T. Temperature threshold levels for heat-induced bone tissue injury: a vital-microscopic study in the rabbit. J Prosthet Dent 1983;50(1):101–107. DOI: 10.1016/0022-3913(83)90174-9.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.