The Journal of Contemporary Dental Practice

Register      Login



Volume / Issue

Online First

Related articles

VOLUME 24 , ISSUE 5 ( May, 2023 ) > List of Articles


Estimation of the Efficacy of Remineralizing Agents on the Microhardness of Deciduous Teeth Demineralized Using Pediatric Formulations

T Nishna, Amith Adyanthaya, Ann Meera Johnson, Jipsa Venugopal, Malini Venugopal, RV Anju

Keywords : Clinpro Tooth Crème, CPP-ACP, Dental erosion, f-TCP, GC Tooth Mousse, Pediatric syrups, Remineralizing agents

Citation Information : Nishna T, Adyanthaya A, Johnson AM, Venugopal J, Venugopal M, Anju R. Estimation of the Efficacy of Remineralizing Agents on the Microhardness of Deciduous Teeth Demineralized Using Pediatric Formulations. J Contemp Dent Pract 2023; 24 (5):325-336.

DOI: 10.5005/jp-journals-10024-3505

License: CC BY-NC 4.0

Published Online: 07-07-2023

Copyright Statement:  Copyright © 2023; The Author(s).


Aim: This study aimed to evaluate the demineralizing effect of commonly used pediatric syrup formulations on primary teeth and the efficacy of two readily available remineralizing agents in treating this effect. Materials and methods: Ninety primary teeth were used for sample preparation and divided into three groups: antibiotic syrup (group A), cough syrup (group B), and control (group C) groups. These groups were further categorized into intragroups according to the treatment with remineralizing agents: groups A1, B1, and C1 received GC Tooth Mousse (casein phosphopeptide-amorphous calcium phosphate, CPP-ACP paste) and groups A2, B2, and C2 received Clinpro Tooth Crème. The samples were subjected to a series of demineralization cycles for 14 days, and remineralization cycles until 30 days were performed using two remineralizing agents, that is, GC Tooth Mousse (CPP-ACP paste) and Clinpro Tooth Crème and were evaluated using Vicker's microhardness test. Results: Antibiotic syrup (group A) and cough syrup (group B) showed a significant decrease in surface microhardness compared with control (group C). All intragroups showed an increase in surface microhardness after treatment with remineralizing agents, which was significantly higher in intragroups A1, B1, and C1 treated with GC Tooth Mousse (CPP-ACP paste). Conclusions: Oral liquid medications showed definite demineralization potential. CPP-ACP paste was found to be better than Clinpro Tooth Crème for demineralized teeth. Clinical significance: The use of over-the-counter drugs has increased among the average Indian population, especially for the treatment of fever, cold, and cough. Unwise use of medications by the present population without proper medical guidance will lead to irreparable changes in future generations.

  1. Schlueter N, Amaechi BT, Bartlett D, et al. Terminology of erosive tooth wear: Consensus report of a workshop organized by the Orca and the Cariology Research Group of the IADR. Caries Res 2019;54(1):2–6. DOI: 10.1159/000503308.
  2. Imfeld T. Dental erosion: Definition, classification and links. Eur J Oral Sci 1996;104(2):151–155. DOI: 10.1111/j.1600-0722.1996.tb00063.x.
  3. Jarvinen VK, Rytomaa II, Heinonen OP. Risk factors in dental erosion. J Dent Res 1991;70(6):942–947. DOI: 10.1177/00220345910700060601.
  4. Dalpian DM, Casagrande L, Franzon R, et al. Cariogenic potential of pediatric liquid medicaments: An in vitro study. J Clin Pediatr Dent 2012;36(4):363–367. DOI: n404t58110t18082.
  5. Rytömaa I, Järvinen V, Heinonen OP. Occupational syrup-tasting and Dental Health. Acta Odontol Scand 1994;52(1):20–24. DOI: 10.3109/00016359409096371.
  6. Lussi A, Schlueter N, Rakhmatullina E, et al. Dental erosion – An overview with emphasis on chemical and histopathological aspects. Caries Res 2011;45(Suppl. 1):2–12. DOI: 10.1159/000325915.
  7. Carvalho TS, Lussi A, Schlueter N, et al. Differences in susceptibility of deciduous and permanent teeth to erosion exist, albeit depending on protocol design and method of assessment. Sci Rep 2022;12(1). DOI: 10.1038/s41598-022-08116-0.
  8. Shellis RP, Ganss C, Ren Y, et al. Methodology and models in erosion research: Discussion and conclusions. Caries Res 2011; 45(Suppl. 1):69–77. DOI: 10.1159/000325971.
  9. Vieira A, Hancock R, Limeback H, et al. How does fluoride concentration in the tooth affect apatite crystal size? J Dent Res 2003;82(11):909–913. DOI: 10.1177/154405910308201112.
  10. Vieira A, Hancock R, Dumitriu M, et al. How does fluoride affect dentin microhardness and mineralization? J Dent Res 2005;84(10): 951–957. DOI: 10.1177/154405910508401015.
  11. Xavier AF, Moura EFF, Azevedo WF, et al. Erosive and cariogenicity potential of pediatric drugs: Study of physicochemical parameters. BMC Oral Health 2013;13(1):71. DOI: 10.1186/1472-6831-13-71.
  12. Mennella JA, Spector AC, Reed DR, et al. The bad taste of medicines: Overview of basic research on bitter taste. Clin Ther 2013;35(8):1225–1246. DOI: 10.1016/j.clinthera.2013.06.007.
  13. Rouaz K, Chiclana-Rodríguez B, Nardi-Ricart A, et al. Excipients in the paediatric population: A review. Pharmaceutics 2021;13(3):387. DOI: 10.3390/pharmaceutics13030387.
  14. Arora R, Mukherjee U, Arora V. Erosive potential of sugar free and sugar containing pediatric medicines given regularly and long term to children. Indian J Pediatr 2011;79(6):759–763. DOI: 10.1007/s12098-011-0543-5.
  15. Malik M, Tahir MJ, Jabbar R, et al. Self-medication during COVID-19 pandemic: Challenges and opportunities. Drugs Ther Perspect 2020;36(12):565–567. DOI: 10.1007/s40267-020-00785-z.
  16. Singana T, Suma NK. An in vitro assessment of cariogenic and erosive potential of pediatric liquid medicaments on primary teeth: A comparative study. Int J Clin Pediatr Dent 2020;13(6):595–599. DOI: 10.5005/jp-journals-10005-1824.
  17. Malhotra G. An update on remineralization agents. J Interdisciplinary Dent 2014;4(1):59. DOI: 10.4103/2229-5194.135017.
  18. Garg P, Singh U, Sinha D, et al. An update on remineralizing agents. J Interdisciplinary Dent 2013;3(3):151. DOI: 10.4103/2229-5194.131200.
  19. Pitts NB, Wefel JS. Remineralization/Desensitization: What Is Known? What Is the Future? Adv Dent Res 2009;21(1):83–86. DOI: 10.1177/0895937409335644.
  20. Reddy VN, Snehika G, Achanta A, et al. Enamel erosion: A possible preventive approach by casein phosphopeptide amorphous calcium phosphate—an in vitro study. Int J Clin Pediatr Dent 2020;13(5):486–492. DOI: 10.5005/jp-journals-10005-1827.
  21. Reddy D, Azher U, Paul ST, et al. Comparison of remineralization potential of casein phosphopeptide: Amorphous calcium phosphate, nano-hydroxyapatite and calcium sucrose phosphate on artificial enamel lesions: An in vitro study. Int J Clin Pediatr Dent 2022;15(1):69–73. DOI: 10.5005/jp-journals-10005-2339.
  22. Tung MS. Calcium phosphates: Structure, composition, solubility, and stability. In: Amjad, Z. (Ed). Calcium Phosphates in Biological and Industrial Systems. Boston, MA: Springer; 1998, pp. 1–19. DOI: 10.1007/978-1-4615-5517-9_1.
  23. Gaffar A, Afflitto J. Recent advances in dentifrice technologies. In: Amjad Z (Ed). Calcium Phosphates in Biological and Industrial Systems. Boston, MA: Springer; 1998. pp. 325–55. DOI: 10.1007/978-1-4615-5517-9_14.
  24. McKnight-Hanes C, Whitford GM. Fluoride release from three glass ionomer materials and the effects of varnishing with or without finishing. Caries Res 1992;26(5):345–350. DOI: 10.1159/000261466.
  25. Girish Babu KL, Jagadeesh KN, Kumaraswamy Naik LR, et al. Pediatric liquid medicaments - are they cariogenic? an in vitro study. J Int Soc Prevent Commun Dent 2014;4(2):108. DOI: 10.4103/2231-0762. 137637.
  26. Girish Babu K, Rai K, Hedge A. Pediatric liquid medicaments – do they erode the teeth surface? an in vitro study: Part I. J Clin Pediatr Dent 2008;32(3):189–194. DOI: 10.17796/jcpd.32.3.j22m7t8163739820.
  27. Babu KLG, Rai K, Hegde A. PH of medicated syrups–does it really matter? An in-vitro study: Part-II. J Clin Pediatr Dent 2008;33(2):137–142. DOI: 10.17796/jcpd.33.2.q5280t3744827v0h.
  28. Kılınç G, Çetin M, Ellidokuz H. The relationship of salivary flow rate and salivary pH on dental caries in children. J Pediatr Res 2015;2(2):87–91. DOI: 10.4274/jpr.64935.
  29. Crossner CG. Salivary flow rate in children and adolescents. Sweden Dent J 1984;8(6):271–276. PMID: 6597630.
  30. Parr TA. An investigation into sugar-containing and sugar-free over-the-counter medicines. Br Dent J 1994;176(1):11. DOI: 10.1038/sj.bdj.4808348.
  31. Balakrishnan A, Jonathan R, Benin P, et al. Evaluation to determine the caries remineralization potential of three dentifrices: An in vitro study. J Conserv Dent 2013;16(4):375. DOI: 10.4103/0972-0707.114347.
  32. Scatena C, Galafassi D, Gomes-Silva JM, et al. In vitro erosive effect of pediatric medicines on deciduous tooth enamel. Braz Dent J 2014;25(1):22–27. DOI: 10.1590/0103-6440201302344.
  33. Mali GV, Dodamani AS, Karibasappa GN, et al. Effect of conventional and sugar free pediatric syrup formulations on primary tooth enamel hardness: An in vitro study. J Indian Soc Pedod Prev Dent 2015;33(4):331. DOI: 10.4103/0970-4388.165707.
  34. Amaechi BT, Higham SM, Edgar WM. Factors influencing the development of dental erosion in vitro: Enamel type, temperature and exposure time. J Oral Rehabil 1999;26(8):624–630. DOI: 10.1046/j.1365-2842.1999.00433.x.
  35. Hara AT, Ando M, González-Cabezas C, et al. Protective effect of the dental pellicle against erosive challenges in situ. J Dent Res 2006;85(7):612–616. DOI: 10.1177/154405910608500706.
  36. Eisenburger M, Addy M, Hughes JA, et al. Effect of time on the remineralisation of enamel by synthetic saliva after citric acid erosion. Caries Res 2001;35(3):211–215. DOI: 10.1159/000047458.
  37. Lata S, Varghese NO, Varughese JM. Remineralization potential of fluoride and amorphous calcium phosphate-casein phospho peptide on enamel lesions: An in vitro comparative evaluation. J Conserv Dent 2010;13(1):42. DOI: 10.4103/0972-0707.62634.
  38. Darshan HE, Shashikiran ND. The effect of mc innes solution on enamel and the effect of tooth mousse on bleached enamel: An in vitro study. J Conserv Dent 2008;11(2):86. DOI: 10.4103/0972-0707.44058.
  39. Valinoti AC, da Silva Pierro VS, da Silva EM, et al. In vitro alterations in dental enamel exposed to acidic medicines. Int J Paediatr Dent 2010;21(2):141–150. DOI: 10.1111/j.1365-263X.2010.01104.x.
  40. Costa CC, Almeida IC, Costa Filho LC. Erosive effect of an antihistamine-containing syrup on primary enamel and its reduction by fluoride dentifrice. Int J Paediatr Dent 2006;16(3):174–180. DOI: 10.1111/j.1365-263X.2006.00713.x.
  41. Haghgoo R, Haghgou HR, Asdollah FM. Comparison of the microhardness of primary and permanent teeth after immersion in two types of carbonated beverages. J Int Soc Prev Commun Dent 2016;6(4):344. DOI: 10.4103/2231-0762.186803.
  42. Gentile E, Di Stasio D, Santoro R, et al. In vivo microstructural analysis of enamel in permanent and deciduous teeth. Ultrast Pathol 2014;39(2):131–134. DOI: 10.3109/01913123.2014.960544.
  43. Low IM, Duraman N, Davies IJ. Microstructure–property relationships in human adult and baby canine teeth. Key Eng Mater 2006; 309–311:23–26. DOI: 10.4028/
  44. Featherstone JDB. Dental caries: A dynamic disease process. Aust Dent J 2008;53(3):286–291. DOI: 10.1111/j.1834-7819.2008.00064.x.
  45. Featherstone JDB, Duncan JF, Cutress TW. A mechanism for dental caries based on chemical processes and diffusion phenomena during in-vitro caries simulation on human tooth enamel. Arch Oral Biol 1979;24(2):101–112. DOI: 10.1016/0003-9969(79)90057-8.
  46. Bader JD. Casein phosphopeptide–amorphous calcium phosphate shows promise for preventing caries. Evid Based Dent 2010;11(1):11–12. DOI: 10.1038/sj.ebd.6400701.
  47. Panich M, Poolthong S. The effect of casein phosphopeptide–amorphous calcium phosphate and a cola soft drink on in vitro enamel hardness. J Am Dent Assoc 2009;140(4):455–460. DOI: 10.14219/jada.archive.2009.0195.
  48. Reynolds EC, Cain CJ, Webber EL, et al. Anticariogenicity of calcium phosphate complexes of tryptic casein phosphopeptides in the rat. J Dent Res 1995;74(6):1272–1279. DOI: 10.1177/00220345 950740060601.
  49. Meurman JH, Gate JM. Pathogenesis and modifying factors of dental erosion. Eur J Oral Sci 1996;104(2):199–206. DOI: 10.1111/j.1600-0722.1996.tb00068.x.
  50. Grewal N, Kudupudi V, Grewal S. Surface remineralization potential of casein phosphopeptide-amorphous calcium phosphate on enamel eroded by cola-drinks: An in-situ model study. Contemp Clin Dent 2013;4(3):331. DOI: 10.4103/0976-237X.118385.
  51. Medications and cough syrups may cause cavities. Br Dent J 2006;200(2):70.
  52. Mayo JA, Ritchie JR. Acidogenic potential of “sugar-free” Cough drops. Open Dent J 2009;3(1):26–30. DOI: 10.2174/1874210600903010026.
  53. Anand A, Kulkarni P, Bansal A, et al. Erosive effects of pediatric liquid medicinal syrups on primary enamel: An in vitro comparative study. Indian J Dent 2016;7(3):131. DOI: 10.4103/0975-962X.189338.
  54. Dave PH, Gurunathan D, Sudhan Vasantharajan M. Comparison of pH levels of the saliva before and after the consumption of cough syrups in children. Biomed Pharmacol J 2018;11(3):1443–1448. DOI: 10.13005/bpj/1509.
  55. Leme AFP, Koo H, Bellato CM, et al. The role of sucrose in cariogenic dental biofilm formation—new insight. J Dent Res 2006;85(10):878–887. DOI: 10.1177/154405910608501002.
  56. Roberts IF, Roberts GJ. Relation between medicines sweetened with sucrose and dental disease. BMJ 1979;2(6181):14–16. DOI: 10.1136/bmj.2.6181.14.
  57. Loesche WJ, Eklund SA, Mehlisch DF, et al. Possible effect of medically administered antibiotics on the mutans streptococci: Implications for reduction in decay. Oral Microbiol Immunol 1989;4(2):77–81. DOI: 10.1111/j.1399-302x.1989.tb00103.x.
  58. Soares DN, Valinoti AC, Pierro VS, et al. Cross-sectional microhardness of bovine enamel subjected to three paediatric liquid oral medicines: An in vitro study. Eur Arch Paediatr Dent 2012;13(5): 261–265. DOI: 10.1007/BF03262882.
  59. Neves BG, da Silva Pierro VS, Maia LC. Pediatricians’ perceptions of the use of sweetened medications related to oral health. J Clin Pediatr Dent 2007;32(2):133–137. DOI: 10.17796/jcpd.32.2.5773462618772x11.
  60. Nirmala SVSG, Nuvvula S, Popuri VD, et al. Oral health concerns with sweetened medicaments: Pediatricians′ acuity. J Int Soc Prev Commun Dent 2015;5(1):35. DOI: 10.4103/2231-0762.151973.
  61. Sulis G, Batomen B, Kotwani A, et al. Sales of antibiotics and hydroxychloroquine in India during the COVID-19 epidemic: An interrupted time series analysis. PLOS Med 2021;18(7):e1003682. DOI: 10.1371/journal.pmed.1003682.
  62. Bradley M, Kinirons MJ. A survey of factors influencing the prescribing of sugar-free medicines for children by a group of General Medical Practitioners in Northern Ireland. Int J Paediatr Dent 2009;6(4):261–264. DOI: 10.1111/j.1365-263x.1996.tb00255.x.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.