The Journal of Contemporary Dental Practice

Register      Login



Volume / Issue

Online First

Related articles

VOLUME 24 , ISSUE 6 ( June, 2023 ) > List of Articles


Formulation, Configuration, and Physical Properties of Dental Composite Resin Containing a Novel 2π + 2π Photodimerized Crosslinker – Cinnamyl Methacrylate: An In Vitro Research

Murugesan Sreevarun, Ganesan Suganya, Vikraman Rakshagan, Vayadadi Bhanuchander, Karthigeyan Suma

Keywords : Cinnamyl methacrylate, Composite resin, Copolymerization, Cross-link, Photodimerization

Citation Information : Sreevarun M, Suganya G, Rakshagan V, Bhanuchander V, Suma K. Formulation, Configuration, and Physical Properties of Dental Composite Resin Containing a Novel 2π + 2π Photodimerized Crosslinker – Cinnamyl Methacrylate: An In Vitro Research. J Contemp Dent Pract 2023; 24 (6):364-371.

DOI: 10.5005/jp-journals-10024-3480

License: CC BY-NC 4.0

Published Online: 28-07-2023

Copyright Statement:  Copyright © 2023; The Author(s).


Aim: To formulate and characterize the chemical structure of a new dental composite with photodimerized cinnamyl methacrylate (PD-CMA) photo-crosslinking comonomer and to evaluate the monomer-to-polymer conversion (MPC) and glass transition temperature (Tg) of the new composite copolymers. Materials and methods: CMA was PD by ultraviolet C-type (UVC) irradiation. The research groups were a control group C0 without PD-CMA and two trial groups: E10 (10 wt. % PD-CMA substituted in the base comonomers (B) and diluent (D) mixture); E20 (20 wt.% PD-CMA completely replacing the diluent (D) monomer). Infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopies were employed for ascertaining copolymerization (CP). The surface features and composition of the copolymers were explained by field-emission scanning electron microscopy (FESEM) and energy dispersive X-ray (EDX) spectroscopy, respectively. The MPC and Tg of the copolymers were assessed using FTIR and differential scanning calorimetry, respectively. Statistical tests were used to compare the groups. Results: The configuration of the new copolymers P (BD-Co-CMA) and P(B-Co-CMA) was confirmed. The MPC% and Tg of the copolymers were better than the control. PD-CMA at 20 wt. % in the P (B-Co-CMA) copolymer exhibited the highest MPC% and Tg. Conclusion: The incorporation of PD-CMA in the composite resin resulted in new P (BD-Co-CMA) and P (B-Co-CMA) copolymers with improved MPC% and Tg. Clinical significance: The substitution with PD-CMA offset the shortcomings of the conventional BD comonomers concerning the mechanical properties and biocompatibility of the restorative composite resin. This might ameliorate the restorations in vivo longevity and serviceability.

  1. Mitra SB, Sakaguchi RL. Restorative materials - composites and polymers. In: Sakaguchi RL, Powers JM, (Eds). Craig's restorative dental materials. 13th edition. St. Louis: Mosby, 2013. pp. 161–198.
  2. Vasudeva G. Monomer systems for dental composites and their future. J Calif Dent Assoc 2009;37(6):389–398. PMID: 19831015.
  3. Santulli C. Nanostructured composites for dental fillings. In: Swain SK, Jawaid M, (Eds). Nanostructured polymer composites for biomedical applications. Amsterdam: Elsevier 2019. pp. 277–294. DOI: 10.1016/B978-0-12-816771-7.00014-4.
  4. Peutzfeldt A. Resin composites in dentistry: The monomer systems. Eur J Oral Sci 1997;105(2):97–116. DOI: 10.1111/j.1600-0722.1997.tb00188.x.
  5. Alshali RZ, Silikas N, Satterthwaite JD. Degree of conversion of bulk-fill compared to propriety resin-composites at two time intervals. Dent Mater 2013;29(9):e213–e217. DOI: 10.1016/
  6. Randolph LD, Palin WM, Bebelman S, et al. Ultra-fast light-curing resin composite with increased conversion and reduced monomer elution. Dent Mater 2014;30(5):594–604. DOI: 10.1016/
  7. Par M, Gamulin O, Marovic D, et al. Raman spectroscopic assessment of degree of conversion of bulk-fill resin composites–changes at 24 hours post cure. Oper Dent 2015;40(3):E92–E101. DOI: 10.2341/14-091-L.
  8. Sideridou ID, Tserki V, Papanastasiou G. Effect of chemical structure on degree of conversion in light-cured dimethacrylate-based dental resins. Biomaterials 2002;23(8):1819–1829. DOI: 10.1016/s0142-9612(01)00308-8.
  9. Gajewski VE, Pfeifer CS, Fróes-Salgado NR, et al. Monomers used in resin composites: Degree of conversion, mechanical properties and water sorption/solubility. Braz Dent J 2012;23(5):508–514. DOI: 10.1590/s0103-64402012000500007.
  10. Stansbury JW. Dimethacrylate network formation and polymer property evolution as determined by the selection of monomers and curing conditions. Dent Mater 2012;28(1):13–22. DOI: 10.1016/
  11. Leprince JG, Palin WM, Hadis MA, et al. Progress in dimethacrylate-based dental composite technology and curing efficiency. Dent Mater 2013;29(2):139–156. DOI: 10.1016/
  12. Moldovan M, Balazsi R, Soanca A, et al. Evaluation of the degree of conversion, residual monomers and mechanical properties of some light-cured dental resin composites. Materials (Basel) 2019;12(13):2109. DOI: 10.3390/ma12132109.
  13. Krzeminski M, Molinari M, Troyon M, et al. Calorimetric characterization of the heterogeneities produced by the radiation-induced cross-linking polymerization of aromatic diacrylates. Macromolecules 2010;43(8):3757–3763. DOI: 10.1021/ma902817g.
  14. Chung CM, Kim MS, Kim JG, et al. Synthesis and photopolymerization of trifunctional methacrylates and their application as dental monomers. J Biomed Mater Res 2002;62(4):622–627. DOI: 10.1002/jbm.10359.
  15. Ferracane JL. Hygroscopic and hydrolytic effects in dental polymer networks. Dent Mater 2006;22(3):211–222. DOI: 10.1016/
  16. Asmussen E, Peutzfeldt A. Influence of pulse-delay curing on softening of polymer structures. J Dent Res 2001;80(6):1570–1573. DOI: 10.1177/00220345010800061801.
  17. Ajay R, Suma K, Ali SA. Monomer modifications of denture base acrylic resin: A systematic review and meta-analysis. J Pharm Bioall Sci 2019;11(Suppl 2):S112–S125. DOI: 10.4103/JPBS.JPBS_34_19.
  18. Sivakumar JS, Ajay R, Sudhakar V, et al. Chemical characterization and physical properties of dental restorative composite resin with a novel multifunctional cross-linking comonomer. J Contemp Dent Pract 2021;22(6):630–636. PMID: 34393119.
  19. Viljanen EK, Skrifvars M, Vallittu PK. Dendritic copolymers and particulate filler composites for dental applications: Degree of conversion and thermal properties. Dent Mater 2007;23(11): 1420–1427. DOI: 10.1016/
  20. Zhang Y, Zhang D, Qin C, et al. Physical and mechanical properties of dental nanocomposites composed of aliphatic epoxy resin and epoxidized aromatic hyperbranched polymers. Polym Compos 2008;30(2):176–181. DOI: 10.1002/pc.20549.
  21. Minsk LM, Smith JG, van Deusen WP, et al. Photosensitive polymers. I. Cinnamate esters of poly(vinylalcohol) and cellulose. J Appl Polym Sci 1959;2(6):302–307. DOI: 10.1002/app.1959.070020607.
  22. Oya N, Sukarsaatmadja P, Ishida K, et al. Photoinduced mendable network polymer from poly(butylene adipate) end-functionalized with cinnamoyl groups. Polym J 2012;44:724–729. DOI: 10.1038/pj.2012.18.
  23. Tunc D, le Coz C, Alexandre M, et al. Reversible cross-linking of aliphatic polyamides bearing thermos- and photoresponsive cinnamoyl moieties. Macromolecules 2014;47(23):8247–8254. DOI: org/10.1021/ma502083p.
  24. Imada M, Takenaka Y, Hatanaka H, et al. Unique acrylic resins with aromatic side chains by homopolymerization of cinnamic monomers. Commun Chem 2019;2:109. DOI: 10.1038/s42004-019-0215-3.
  25. Nomoto R, Asada M, McCabe JF, et al. Light exposure required for optimum conversion of light activated resin systems. Dent Mater 2006;22(12):1135–1142. DOI: 10.1016/
  26. Ajay R, Suma K, Sasikala R, et al. Chemical structure and physical properties of heat-cured poly (methyl methacrylate) resin processed with cycloaliphatic comonomer: An in vitro study. J Contemp Dent Pract 2020;21(3):285–290. DOI: 10.4103/jpbs.jpbs_20_20.
  27. Asmussen E, Peutzfeldt A. Influence of UEDMA BisGMA and TEGDMA on selected mechanical properties of experimental resin composites. Dent Mater 1998;14(1):51–56. DOI: 10.1016/s0109-5641(98)00009-8.
  28. Lemon MT, Jones MS, Stansbury JW. Hydrogen bonding interactions in methacrylate monomers and polymers. J Biomed Mater Res A 2007;83(3):734–746. DOI: 10.1002/jbm.a.31448.
  29. Sideridou ID, Karabela MM, Bikiaris DN. Aging studies of light cured dimethacrylate-based dental resins and a resin composite in water or ethanol/water. Dent Mater 2007;23(9):1142–1149. DOI: 10.1016/
  30. Gonçalves F, Pfeifer CC, Stansbury JW, et al. Influence of matrix composition on polymerization stress development of experimental composites. Dent Mater 2010;26(7):697–703. DOI: 10.1016/
  31. Janda R, Roulet JF, Latta M, et al. Water sorption and solubility of contemporary resin-based filling materials. J Biomed Mater Res B Appl Biomater 2007;82(2):545–551. DOI: 10.1002/jbm.b.30760.
  32. Sideridou ID, Karabela MM, Vouvoudi ECh. Dynamic thermomechanical properties and sorption characteristics of two commercial light cured dental resin composites. Dent Mater 2008;24(6):737–743. DOI: 10.1016/
  33. Lovell LG, Newman SM, Bowman CN. The effects of light intensity, temperature, and comonomer composition on the polymerization behavior of dimethacrylate dental resins. J Dent Res 1999;78(8): 1469–1476. DOI: 10.1177/00220345990780081301.
  34. Wollff EM. The effect of cross-linking agents on acrylic resins. Aust Dent J 1962;7(6):439–444. DOI: 10.1111/j.1834-7819.1962.tb02619.x.
  35. Atkinson SD, Almond MJ, Hollins P, et al. The photodimerisation of the alpha- and beta-forms of trans-cinnamic acid: A study of single crystals by vibrational microspectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 2003;59(3):629–635. DOI: 10.1016/s1386-1425(02)00208-1.
  36. Chroszcz M, Barszczewska-Rybarek I. Synthesis of novel urethane-dimethacrylate monomer containing two quaternary ammonium groups for applications in dentistry. Proceedings 2020;67(1):3. DOI: 10.3390/ASEC2020-07548.
  37. Al-Odayni AB, Alfotawi R, Khan R, et al. Synthesis of chemically modified BisGMA analog with low viscosity and potential physical and biological properties for dental resin composite. Dent Mater 2019;35(11):1532–1544. DOI: 10.1016/
  38. Panda T, Naumov P. Time-dependent photodimerization of α-trans-cinnamic acid studied by photocalorimetry and NMR spectroscopy. Cryst Growth Des 2018;18(5):2744–2749. DOI: 10.1021/acs.cgd.7b01409.
  39. Wong K, Boyde A, Howell PGT. A model of temperature transients in dental implants. Biomaterials 2001;22(20):2795–2797. DOI: 10.1016/s0142-9612(01)00023-0.
  40. Greenberg AR, Kusy RP. Influence of crosslinking on the glass transition of poly (acrylic acid). J Appl Polym Sci 1980;25(8):1785–1788. DOI: 10.1002/app.1980.070250825.
  41. Luo Z, Yang Z, Fei Z, et al. Effect of crosslinking rate on the glass transition temperature of polyimide cross-linked silica aerogels. J Polym Res 2020;27(9):255. DOI: 10.1007/s10965-020-02082-9.
  42. Boots HMJ, Pandey RB. Qualitative percolation study of free-radical cross-linking polymerization. Polym Bull 1984;11:415–420. DOI: 10.1007/BF00265480.
  43. Anseth KS, Bowman CN. Kinetic gelation model predictions of crosslinked polymer network microstructure. Chem Eng Sci 1994;49(14):2207–2217. DOI: 10.1016/0009-2509(94)E0055-U.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.