The Journal of Contemporary Dental Practice

Register      Login



Volume / Issue

Online First

Related articles

VOLUME 24 , ISSUE 7 ( July, 2023 ) > List of Articles


Evaluation of Nanomagnesium Oxide in Combination with Garlic Extract as an Endodontic Irrigant: An In Vitro Study

Malikka Navayath, Seshan Rakkesh Ramesh, Rajeswari Kalaiselvam, Rupa Ashok, Mathan Rajan Rajendran, Lakshmi Balaji

Keywords : Enterococcus feacalis, Nanoparticles, Natural irrigant, Root canal irrigant

Citation Information : Navayath M, Ramesh SR, Kalaiselvam R, Ashok R, Rajendran MR, Balaji L. Evaluation of Nanomagnesium Oxide in Combination with Garlic Extract as an Endodontic Irrigant: An In Vitro Study. J Contemp Dent Pract 2023; 24 (7):459-466.

DOI: 10.5005/jp-journals-10024-3530

License: CC BY-NC 4.0

Published Online: 19-08-2023

Copyright Statement:  Copyright © 2023; The Author(s).


Aim: The aim of this in vitro study was to evaluate the effectiveness of the combination of garlic extract in combination with magnesium oxide (MgO) for use as an endodontic irrigant at various contact times. Materials and methods: All 48 teeth were divided into 6 groups according to irrigation used after inoculation with Enterococcus faecalis and incubation. The control groups consisted of saline and sodium hypochlorite (NaOCl) used as irrigants and the test groups employed garlic extract combined with nano-magnesium oxide (nano-MgO) used as irrigant with two contact times, namely, 2 and 5 minutes, and garlic extract and nano-MgO used solely for 5 minutes each. Colony-forming units (CFUs) were counted after plating and incubation. Results: In NaOCl, and in both combination groups, there was a significant reduction in CFU counts. The saline group showed no decrease. Statistical analysis showed no difference in efficacy between NaOCl and the two combination groups. There was a statistical difference between the combination group and garlic/nano-MgO alone at both 2 and 5 minutes. Conclusions: Under the conditions of this study, a novel irrigant, a combination of nanoparticles of MgO and garlic extract was as effective as NaOCl against E. faecalis in an in vitro model at two tested contact times. Clinical significance: Combination of MgO nanoparticles and garlic extract achieves disinfection comparable to gold standard NaOCl without harmful caustic effects of hypochlorite.

  1. Karkare SR, Ahire NP, Khedkar SU. Comparative evaluation of antimicrobial activity of hydroalcoholic extract of Aloe vera, garlic, and 5% sodium hypochlorite as root canal irrigants against Enterococcus faecalis: An in vitro study. J Indian Soc Pedod Prev Dent 2015;33(4):274–278. DOI: 10.4103/0970-4388.165658.
  2. Sundqvist G, Figdor D, Persson S, et al. Microbiologic analysis of teeth with failed endodontic treatment and the outcome of conservative re-treatment. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1998;85(1):86–93. DOI: 10.1016/s1079-2104(98)90404-8.
  3. Stojicic S, Zivkovic S, Qian W, Zhang H, Haapasalo M. Tissue dissolution by sodium hypochlorite: Effect of concentration, temperature, agitation, and surfactant. J Endod 2010;36(9):1558–1562. DOI: 10.1016/j.joen.2010.06.021.
  4. Senia ES, Marshall FJ, Rosen S. The solvent action of sodium hypochlorite on pulp tissue of extracted teeth. Oral Surg Oral Med Oral Pathol 1971;31(1):96–103. DOI: 10.1016/0030-4220(71)90040-5.
  5. Neelakantan P, Sharma S. Pain after single-visit root canal treatment with two single-file systems based on different kinematics: A prospective randomized multicenter clinical study. Clin Oral Investig 2015;19(9):2211–2217. DOI: 10.1007/s00784-015-1448-x.
  6. Gernhardt CR, Eppendorf K, Kozlowski A, Brandt M. Toxicity of concentrated sodium hypochlorite used as an endodontic irrigant. 2004;37(4):272–280. DOI: 10.1111/j.0143-2885.2004.00804.x.
  7. de Sermeño RF, da Silva LAB, Herrera H, Herrera H, Bezerra A, Silva RAB, et al. Tissue damage after sodium hypochlorite extrusion during root canal treatment. YMOE 2009;108(1):e46–e49. DOI: 10.1016/j.tripleo.2008.12.024.
  8. Block E. The chemistry of garlic and onions. Sci Am 1985;252(3): 114–119. DOI: 10.1038/scientificamerican0385-114.
  9. Fani MM, Kohanteb J, Dayaghi M. Inhibitory activity of garlic (Allium sativum) extract on multidrug-resistant Streptococcus mutans. J Indian Soc Pedod Prev Dent 2007;25(4):164–168. DOI: 10.4103/0970-4388.37011.
  10. Di D-R, He Z-Z, Sun Z-Q, Liu J. A new nano-cryosurgical modality for tumor treatment using biodegradable MgO nanoparticles. Nanomedicine 2012;8(8):1233–1241. DOI: 10.1016/j.nano.2012. 02.010.
  11. Rao S, Sunitha L, Rao B, Naik J, Chandrasekhar V. Efficacy of garlic extract and sodium hypochlorite on dental pulp dissolution: An in vitro study. Saudi Endod J 2017;7(1):36–39. DOI: 10.4103/1658-5984.197986.
  12. Birring OJS, Viloria IL, Nunez P. Anti-microbial efficacy of Allium sativum extract against Enterococcus faecalis biofilm and its penetration into the root dentin: An in vitro study. Indian J Dent Res 2015;26(5):477–482. DOI: 10.4103/0970-9290.172041.
  13. Kishen A, Shi Z, Shrestha A, Neoh KG. An investigation on the antibacterial and antibiofilm efficacy of cationic nanoparticulates for root canal disinfection. J Endod 2008;34(12):1515–1520. DOI: 10.1016/j.joen.2008.08.035.
  14. Sharma G, Soni R, Jasuja ND. Phytoassisted synthesis of magnesium oxide nanoparticles with Swertia chirayaita. J Taibah Univ Sci 2017;11(3):471–477. DOI: 10.1016/j.jtusci.2016.09.004.
  15. Bhardwaj SB, Shorey P, Sidhu K, Bhushan J, Chhibber S. Ex vivo evaluation of nano-MgO in the elimination of endodontic pathogen: E. faecalis. IP Indian J Conserv Endod 2021;6(4):222–227. DOI: 10.18231/j.ijce.2021.048.
  16. Eswar K, Venkateshbabu N, Rajeswari K, Kandaswamy D. Dentinal tubule disinfection with 2% chlorhexidine, garlic extract, and calcium hydroxide against Enterococcus faecalis by using real-time polymerase chain reaction: In vitro study. J Conserv Dent 2013;16(3):194–198. DOI: 10.4103/0972-0707.111312.
  17. Louis HB, Kenneth MH. Cohen's Pathways of the Pulp, 12th edition. India: Elsevier; 2021, p. 928.
  18. Basrani B, Haapasalo M. Update on endodontic irrigating solutions. Endod Topics DOI: 2012;27:74–102. DOI: 10.1111/etp.12031.
  19. Mohammadi Z. Sodium hypochlorite in endodontics: An update review. 2008;58(6):329–341. DOI: 10.1111/j.1875-595x.2008.tb00354.x.
  20. Spanberg L, Engström B, Langeland K. Biologic effects of dental materials 3. Toxicity and antimicrobial effect of endodontic antiseptics in vitro. Oral Surg Oral Med Oral Pathol 1973;36(6):856–871. DOI: 10.1016/0030-4220(73)90338-1.
  21. Tekin B, Demirkaya K. Natural irrigation solutions in endodontics. Gulhane Med J 2020;62:133–138. DOI: 10.4274/gulhane.galenos. 2020.902.
  22. Attavar S. Pharmacophore an overview of the antimicrobial effect of natural irrigants in disinfection of root canal system. 2022;13(1):79–82. DOI: 10.51847/PpJg04CzT9.
  23. Cavallito CJ, Bailey JH. Allicin, the antibacterial principle of Allium sativum. I. Isolation, physical properties and antibacterial action. 1950;66(11):1950–1951. DOI: 10.1021/ja01239a048.
  24. Gupta K, Viswanathan R. Combined action of streptocmycin and chloramphenicol with plant antibiotics against tubercle bacilli. I. Streptomycin and chloramphenical with cepharanthine. II. Streptomycin and allicin. Antibiot Chemother (Northfield) 1995;5: 24–27. PMID: 24543344.
  25. Cellini L, Campli ED, Masulli M, Bartolomeo SD, Allocati N. Inhibition of Helicobacter pylori by garlic extract (Allium sativum). FEMS Immunol Med Microbiol 1996;13(4):273–277. DOI: 10.1111/j.1574-695X.1996.tb00251.x.
  26. Jonkers D, Sluimer J, Stobberingh E. Effect of garlic on vancomycin-resistant enterococci. 1999;43(12):3045. DOI: 10.1128/aac.43.12.3045.
  27. Santhini G, Rajesh S, Jotish R. A comparitive evaluation of antimicrobial efficacy of cinnamon and garlic as endodontic irrigants against enterococcus faecalis - An in vitro study. Endodontology 2014;26(1):149–157. DOI: 10.4103/0970-7212.352344.
  28. Bokaeian M, Bameri Z. In vitro antibacterial properties of aqueous garlic extract (AEG) against multidrug-resistant enterococci. Zahedan J Res Med Sci 2013;15(6):43–49.
  29. Chavan SD, Shetty NL, Kanuri M. Comparative evaluation of garlic extract mouthwash and chlorhexidine mouthwash on salivary Streptococcus mutans count: An in vitro study. Oral Health Prev Dent 2010;8(4):369–374. PMID: 21180674.
  30. Ghoddusi J, Forghani M, Ghoddusi J, Forghani M, Bagheri H, Aryan E, et al. Antibacterial efficacy of Allium sativum L. extract as a root canal irrigant in pulpless teeth with infected root canal systems. Int J Res Reports Dent 2021;4(4):147–155.
  31. Siddique R, Ranjan M, Jose J, Srivastav A, Rajakeerthi R, Kamath A. Clinical quantitative antibacterial potency of garlic-lemon against sodium hypochlorite in infected root canals: a double-blinded, randomized, controlled clinical trial. Journal of International Society of Preventive & Community Dentistry 2020;10(6):771.
  32. Monzavi A, Eshraghi S, Hashemian R, Momen–Heravi F. In vitro and ex vivo antimicrobial efficacy of nano-MgO in the elimination of endodontic pathogens. Clin Oral Investig 2015;19(2):349–356. DOI: 10.1007/s00784-014-1253-y.
  33. Koper OB, Klabunde JS, Marchin GL, Klabunde KJ, Stoimenov P, Bohra L. Nanoscale powders and formulations with biocidal activity toward spores and vegetative cells of bacillus species, viruses, and toxins. Curr Microbiol 2002;44(1):49–55. DOI: 10.1007/s00284-001-0073-x.
  34. Sawai J. Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J Microbiol Methods 2003;54:177–182.
  35. Yamamoto O, Sawai J, Sasamoto T. Change in antibacterial characteristics with doping amount of ZnO in MgO–ZnO solid solution. Int J Inorg Mater 2(5):451–454. DOI: 10.1016/S1466-6049(00)00045-3.
  36. Zhang K, An Y, Zhang L, Dong Q. Chemosphere Preparation of controlled nano-MgO and investigation of its bactericidal properties. 2012;89(11):1414–1418. DOI: 10.1016/j.chemosphere.2012.06.007.
  37. Vidic J, Stankic S, Haque F, Ciric D, Le Goffic R, Vidy A, et al. Selective antibacterial effects of mixed ZnMgO nanoparticles. J Nanopart Res 2013;15(5):1595. DOI: 10.1007/s11051-013-1595-4.
  38. Jahangiri L, Kesmati M, Najafzadeh H. effect of nanoparticles of magnesium oxide in mice with and without ketamine. Eur Rev Med Pharmacol Sci 2013;17(20):2706–2710.
  39. Prasanth R, Kumar SD, Jayalakshmi A, Singaravelu G, Govindaraju K, Kumar VG. Green synthesis of magnesium oxide nanoparticles and their antibacterial activity. Indian J Geo Mar Sci 2019;48(8):1210–1215. Corpus ID: 202878691.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.