The Journal of Contemporary Dental Practice

Register      Login



Volume / Issue

Online First

Related articles

VOLUME 24 , ISSUE 9 ( September, 2023 ) > List of Articles


Comparison of Marginal Adaptation, Surface Hardness and Bond Strength of Resected and Retrofilled Calcium Silicate-based Cements Used in Endodontic Surgery: An In Vitro Study

Napassorn Thanatipanont, Phumisak Louwakul

Keywords : Apicoectomy, Biodentine, Bond strength, Calcium silicate, iRoot BP Plus, Marginal adaptation, Orthograde, ProRoot MTA, Retrograde, Surface hardness

Citation Information : Thanatipanont N, Louwakul P. Comparison of Marginal Adaptation, Surface Hardness and Bond Strength of Resected and Retrofilled Calcium Silicate-based Cements Used in Endodontic Surgery: An In Vitro Study. J Contemp Dent Pract 2023; 24 (9):638-644.

DOI: 10.5005/jp-journals-10024-3562

License: CC BY-NC 4.0

Published Online: 13-10-2023

Copyright Statement:  Copyright © 2023; The Author(s).


Aims: This study compared the effects of orthograde and retrograde methods on marginal adaptation, surface hardness, and push-out bond strength (POBS) of three calcium silicate-based used in endodontic surgery. Materials and methods: Ninety single-rooted human mandibular premolars were randomly assigned into six groups (n = 15/group): groups I and II, ProRoot mineral trioxide aggregate (MTA) with orthograde and retrograde methods; groups III and IV, Biodentine (BD) with orthograde and retrograde methods; groups V and VI, iRoot BP Plus (BP-RPM) with orthograde and retrograde methods. After obturation, the apical 3 mm of each root was sectioned into two 1-mm-thick root slices and evaluated for marginal adaptation using a scanning electron microscope, surface hardness using Vickers hardness tester and POBS using a universal testing machine. Results: Orthograde placement had a higher maximum gap width than retrograde placement (p < 0.05), but there was no significant difference among the tested materials (p > 0.05). Biodentine exhibited lower surface hardness than ProRoot MTA and iRoot BP Plus (p < 0.05), but there was no significant difference between ProRoot MTA and iRoot BP Plus (p > 0.05). Orthograde placement had higher POBS compared with retrograde placement (p < 0.05). Biodentine had higher POBS than iRoot BP Plus (p < 0.05), but no significant difference from ProRoot MTA (p > 0.05). The failure mode was mainly mixed for all the tested materials regardless of material type or placement technique. Conclusion: The retrograde method had better marginal adaptation; however, the orthograde method provided better dislodgement resistance. Biodentine had lower surface hardness than MTA and iRoot BP Plus with both techniques, whereas iRoot BP Plus demonstrated lower dislodging resistance than BD. Clinical significance: The current findings suggest that orthograde technique, a simpler periapical surgery, with ProRoot MTA provides potentially better surface hardness and POBS than BD and iRoot BP Plus in single-canal teeth.

PDF Share
  1. von Arx T. Failed root canals: The case for apicoectomy (periradicular surgery). J Oral Maxillofac Surg 2005;63(6):832–837. DOI: 10.1016/j.joms.2005.02.019
  2. Hargreaves KM, Cohen S, & Berman LH. Cohen's Pathways of the Pulp (11th ed.). St Louis, Mo: Mosby Elsevier. 2016.
  3. Kim S, Kratchman S. Modern endodontic surgery concepts and practice: A review. J Endod 2006;32(7):601–623. DOI: 10.1016/j.joen.2005.12.010.
  4. Caronna V, Himel V, Yu Q, et al. Comparison of the surface hardness among 3 materials used in an experimental apexification model under moist and dry environments. J Endod 2014;40(7):986–989. DOI: 10.1016/j.joen.2013.12.005.
  5. Butt N, Talwar S, Chaudhry S, et al. Comparison of physical and mechanical properties of mineral trioxide aggregate and Biodentine. Indian J Dent Res 2014;25(6):692–697. DOI: 10.4103/0970-9290.152163.
  6. Peng W, Liu W, Zhai W, et al. Effect of tricalcium silicate on the proliferation and odontogenic differentiation of human dental pulp cells. J Endod 2011;37(9):1240–1246. DOI: 10.1016/j.joen.2011.05.035.
  7. Zhou W, Zheng Q, Tan X, et al. Comparison of mineral trioxide aggregate and iRoot BP plus root repair material as root-end filling materials in endodontic microsurgery: A prospective randomized controlled study. J Endod 2017;43(1):1–6. DOI: 10.1016/j.joen.2016.10.010.
  8. Leal F, De-Deus G, Brandão C, et al. Similar sealability between bioceramic putty ready-to-use repair cement and white MTA. Braz Dent J 2013;24(4):362–366. DOI: 10.1590/0103-6440201302051.
  9. Safi C, Kohli MR, Kratchman SI, et al. Outcome of endodontic microsurgery using mineral trioxide aggregate or root repair material as root-end filling material: A randomized controlled trial with cone-beam computed tomographic evaluation. J Endod 2019;45(7):831–839. DOI: 10.1016/j.joen.2019.03.014.
  10. Layton CA, Marshall JG, Morgan LA, et al. Evaluation of cracks associated with ultrasonic root-end preparation. J Endod 1996; 22(4):157–160. DOI: 10.1016/S0099-2399(96)80091-4.
  11. Saghiri MA, Lotfi M, Saghiri AM, et al. Effect of pH on sealing ability of white mineral trioxide aggregate as a root-end filling material. J Endod 2008;34(10):1226–1229. DOI: 10.1016/j.joen.2008.07.017.
  12. Nekoofar MH, Oloomi K, Sheykhrezae MS, et al. An evaluation of the effect of blood and human serum on the surface microhardness and surface microstructure of mineral trioxide aggregate. Int Endod J 2010;43(10):849–858. DOI: 10.1111/j.1365-2591.2010.01750.x.
  13. Rahimi S, Ghasemi N, Shahi S, et al. Effect of blood contamination on the retention characteristics of two endodontic biomaterials in simulated furcation perforations. J Endod 2013;39(5):697–700. DOI: 10.1016/j.joen.2013.01.002.
  14. Andelin WE, Browning DF, Hsu GH, et al. Microleakage of resected MTA. J Endod 2002;28(8):573–574. DOI: 10.1097/00004770-200208000-00002.
  15. Angerame D, De Biasi M, Lenhardt M, et al. Root-end resection with or without retrograde obturation after orthograde filling with two techniques: a micro-CT study. Aust Endod J 2022;48(3):423–430. DOI: 10.1111/aej.12634.
  16. Habibi M, Ghoddusi J, Habibi A, et al. Healing process following application of set or fresh mineral trioxide aggregate as a root-end filling material. Eur J Dent 2011;5(1):19–23. DOI: 10.1055/s-0039-1698854.
  17. Lertmalapong P, Jantarat J, Srisatjaluk RL, et al. Bacterial leakage and marginal adaptation of various bioceramics as apical plug in open apex model. J Investig Clin Dent 2019;10(1):e12371. DOI: 10.1111/jicd.12371.
  18. Paulo CR, Marques JA, Sequeira DB, et al. Influence of blood contamination on push-out bond strength of three calcium silicate-based materials to root dentin. Appl Sci 2021;11(15):6849. DOI: 10.3390/app11156849.
  19. Bansal R, Bansal M, Matta M, et al. Evaluation of marginal adaptation of MTA, biodentine, and MTA plus as root-end filling materials—An SEM study. Dent J Adv Stud 2019;07. DOI: 10.1055/s-0039-1684154.
  20. Deepthi V, Mallikarjun E, Nagesh B, et al. Effect of acidic pH on microhardness and microstructure of theraCal LC, endosequence, mineral trioxide aggregate, and biodentine when used as root repair material. J Conserv Dent 2018;21(4):408–412. DOI: 10.4103/JCD.JCD_308_17.
  21. Bayraktar K, Basturk FB, Turkaydin D, et al. Long-term effect of acidic pH on the surface microhardness of ProRoot mineral trioxide aggregate, Biodentine, and total fill root repair material putty. Dent Res J (Isfahan) 2021;18(1):2. DOI: 10.4103/1735-3327.310030.
  22. Akcay H, Arslan H, Akcay M, et al. Evaluation of the bond strength of root-end placed mineral trioxide aggregate and Biodentine in the absence/presence of blood contamination. Eur J Dent 2016;10(3): 370–375. DOI: 10.4103/1305-7456.184150.
  23. Moradi S, Disfani R, Ghazvini K, et al. Sealing ability of orthograde MTA and CEM cement in apically resected roots using bacterial leakage method. Iran Endod J 2013;8(3):109–113. DOI:
  24. Shokouhinejad N, Nekoofar MH, Ashoftehyazdi K, et al. Marginal adaptation of new bioceramic materials and mineral trioxide aggregate: A scanning electron microscopy study. Iran Endod J 2014;9(2):144–1448. DOI:
  25. Bolbolian M, Mostafaei F, Faegh S. Evaluation of the marginal adaptation of ProRoot MTA, Biodentine, and RetroMTA as root-end filling materials. Dent Hypotheses 2020;11(4):97–102. DOI: 10.4103/denthyp.denthyp_50_20.
  26. Al Fouzan K, Awadh M, Badwelan M, et al. Marginal adaptation of mineral trioxide aggregate (MTA) to root dentin surface with orthograde/retrograde application techniques: A microcomputed tomographic analysis. J Conserv Dent 2015;18(2):109–13. DOI: 10.4103/0972-0707.153069.
  27. Camilleri J, Sorrentino F, Damidot D. Investigation of the hydration and bioactivity of radiopacified tricalcium silicate cement, Biodentine and MTA Angelus. Dent Mater 2013;29(5):580–593. DOI: 10.1016/
  28. Gandolfi MG, Iacono F, Agee K, et al. Setting time and expansion in different soaking media of experimental accelerated calcium-silicate cements and ProRoot MTA. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009;108(6):e39–e45. DOI: 10.1016/j.tripleo.2009.07.039.
  29. Ali IAA, Razek AAA, El-Gindy AA. Microleakage and marginal adaptation of three root-end filling materials: An in vitro study. ENDO (Lond Engl) 2017;11(3):191–196. DOI:
  30. Jardine AP, Rosa KFV, Matoso FB, et al. Marginal gaps and internal voids after root-end filling using three calcium silicate-based materials: A Micro-CT analysis. Braz Dent J 2021;32(4):1–7. DOI: 10.1590/0103-6440202104096.
  31. Nekoofar MH, Stone DF, Dummer PM. The effect of blood contamination on the compressive strength and surface microstructure of mineral trioxide aggregate. Int Endod J 2010;43(9):782–791. DOI: 10.1111/j.1365-2591.2010.01745.x.
  32. Majeed A, AlShwaimi E. Push-out bond strength and surface microhardness of calcium silicate-based biomaterials: An in vitro study. Med Princ Pract 2017;26(2):139–145. DOI: 10.1159/000453455.
  33. Elnaghy AM. Influence of acidic environment on properties of biodentine and white mineral trioxide aggregate: A comparative study. J Endod 2014;40(7):953–957. DOI: 10.1016/j.joen.2013.11.007.
  34. Pane ES, Palamara JE, Messer HH. Critical evaluation of the push-out test for root canal filling materials. J Endod 2013;39(5):669–673. DOI: 10.1016/j.joen.2012.12.032.
  35. Garberoglio R, Brännström M. Scanning electron microscopic investigation of human dentinal tubules. Arch Oral Biol 1976;21(6):355–362. DOI: 10.1016/S0003-9969(76)80003-9.
  36. Ulusoy ÖI, Paltun YN, Güven N, et al. Dislodgement resistance of calcium silicate-based materials from root canals with varying thickness of dentine. Int Endod J 2016;49(12):1188–1193. DOI: 10.1111/iej.12573.
  37. Shokouhinejad N, Nekoofar MH, Iravani A, et al. Effect of acidic environment on the push-out bond strength of mineral trioxide aggregate. J Endod 2010;36(5):871–874. DOI: 10.1016/j.joen.2009.12.025.
  38. El-Ma'aita AM, Qualtrough AJ, Watts DC. The effect of smear layer on the push-out bond strength of root canal calcium silicate cements. Dent Mater 2013;29(7):797–803. DOI: 10.1016/
  39. Al-Hiyasat AS, Yousef WA. Push-out bond strength of calcium silicate-based cements in the presence or absence of a smear layer. Int J Dent 2022;2022:7724384. DOI: 10.1155/2022/7724384.
  40. Han L, Okiji T. Uptake of calcium and silicon released from calcium silicate-based endodontic materials into root canal dentine. Int Endod J 2011;44(12):1081–1087. DOI: 10.1111/j.1365-2591.2011.01924.x.
  41. Kadić S, Baraba A, Miletić I, et al. Push-out bond strength of three different calcium silicate-based root-end filling materials after ultrasonic retrograde cavity preparation. Clin Oral Investig 2018;22(3):1559–1565. DOI: 10.1007/s00784-017-2244-6.
  42. Niu LN, Jiao K, Wang TD, et al. A review of the bioactivity of hydraulic calcium silicate cements. J Dent 2014;42(5):517–533. DOI: 10.1016/j.jdent.2013.12.015.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.