The Journal of Contemporary Dental Practice

Register      Login



Volume / Issue

Online First

Related articles

VOLUME 25 , ISSUE 1 ( January, 2024 ) > List of Articles


The Effect of Modified Framework Design on the Fracture Resistance of IPS e.max Press Crown after Thermocycling and Cyclic Loading

Mahnaz Golrezaei, Hossein Ali Mahgoli, Negin Yaghoobi, Somayeh Niakan

Keywords : Dental porcelain, Dental prosthesis design, Incisor

Citation Information : Golrezaei M, Mahgoli HA, Yaghoobi N, Niakan S. The Effect of Modified Framework Design on the Fracture Resistance of IPS e.max Press Crown after Thermocycling and Cyclic Loading. J Contemp Dent Pract 2024; 25 (1):79-84.

DOI: 10.5005/jp-journals-10024-3621

License: CC BY-NC 4.0

Published Online: 17-02-2024

Copyright Statement:  Copyright © 2024; The Author(s).


Aim: This study aimed to investigate the effect of modified framework (MF) design on the fracture resistance of IPS e.max Press anterior single crown after thermocycling and cyclic loading. Materials and methods: Two types of IPS e.max Press frameworks were designed (n = 10); standard framework (SF) with a 0.5 mm uniform thickness and MF with a lingual margin of 1 mm in thickness and 2 mm in height connected to a proximal strut of 4 mm height and a 0.3 mm wide facial collar. The crowns were cemented to resin dies, subjected to 5,000 cycles of thermocycling, and loaded 10,000 cycles at 100 N. A universal testing machine was used to load specimens to fracture, and the modes of failure were determined. Results: The mean and standard deviation (SD) of fracture resistance were 219.24 ± 110.00 N and 216.54 ±120.02 N in the SF and MF groups. Thus, there was no significant difference (p = 0.96). Mixed fracture was the most common failure mode in both groups. We found no statistically significant difference between the groups (p = 0.58). Conclusion: The MF design did not increase the fracture resistance of IPS e.max Press crown. Clinical significance: Framework design is an essential factor for the success of all-ceramic restorations and its modification might be regarded as an approach to increase fracture resistance. Furthermore, the modified design was evaluated in metal–ceramic or zirconia crowns while less attention was paid to the IPS e.max Press crowns.

  1. Zarone F, Di Mauro MI, Ausiello P, et al. Current status on lithium disilicate and zirconia: A narrative review. BMC Oral Health 2019;19(1):134. DOI: 10.1186/s12903-019-0838-x.
  2. Zhang LX, Hong DW, Zheng M, et al. Is the bond strength of zirconia-reinforced lithium silicate lower than that of lithium disilicate? A systematic review and meta-analysis. J Prosthodont Res 2022;66(4):530–537. DOI: 10.2186/jpr.JPR_D_20_00112.
  3. Luo Y, Luo J, Zhou J, et al. IPS e.max Press porcelain crown in esthetic restoration of anterior teeth: A follow-up of marginal adaptation and color match. Chin J Tissue Eng Res 2015;19(25):4017. DOI: 10.3969/j.issn.2095-4344.2015.25.016.
  4. Eleftheriaduo I, Raptopoulos M, Kokoti M. All-ceramic restorations of disilicate lithium, alumina and zirconia – Part A: In vitro data. Acta Sci Dent Sci 2019;3(5):128–133.
  5. Raptopoulos M, Eleftheriaduo I, Kokoti M. All-ceramic restorations of disilicate lithium, alumina and zirconia – Part B: Clinical Data. Acta Sci Dent Sci 2019;3(4):83–91.
  6. Okabayashi S, Nomoto S, Sato T, et al. Influence of proximal supportive design of zirconia framework on fracture load of veneering porcelain. Dent Mater J 2013;32(4):572–577. DOI: 10.4012/dmj.2013-039.
  7. Badran N, Abdel Kader S, Alabbassy F. Effect of incisal porcelain veneering thickness on the fracture resistance of CAD/CAM zirconia all-ceramic anterior crowns. Int J Dent 2019;2019:1–12. DOI: 10.1155/2019/6548519.
  8. Bonfante EA, Da Silva NR, Coelho PG, et al. Effect of framework design on crown failure. Eur J Oral Sci 2009;117(2):194–199. DOI: 10.1111/j.1600-0722.2008.00608.x.
  9. Seyyedan K, Fayyaz A, Faraghat A, et al. Effect of zirconia substructure design on the in vitro fracture load of molar zirconia core crowns. J Dent Sch Shahid Beheshti Med Sci Univ 2012;30:86–94.
  10. Ha SR, Kim SH, Lee JB, et al. Effects of coping designs on fracture modes in zirconia crowns: Progressive load test. Ceram Int 2016;42(6):7380–7389. DOI: 10.1016/j.ceramint.2016.01.141.
  11. Øilo M, Kvam K, Gjerdet NR. Load at fracture of monolithic and bilayered zirconia crowns with and without a cervical zirconia collar. J Prosthet Dent 2016;115(5):630–636. DOI: 10.1016/j.prosdent.2015.11.017.
  12. Marker JC, Goodkind RJ, Gerberich WW. The compressive strength of nonprecious versus precious ceramometal restorations with various frame designs. J Prosthet Dent 1986;55(5):560–567. DOI: 10.1016/0022-3913(86)90031-4.
  13. Salimi H, Mosharraf R, Savabi O. Effect of framework design on fracture resistance of zirconium oxide posterior fixed partial dentures. Dent Res J 2012;9(6):764. PMID: 23559956.
  14. Miller LL. Framework design in ceramo–metal restorations. Dent Clin North Am 1977;21(4):699–716. PMID: 20340.
  15. Nikzadjamnani S, Azari A, Niakan S, et al. Fracture resistance of zirconia restorations with a modified framework design. Front Dent 2017;14(6):321–328. PMID: 29942326.
  16. Ispas A, Iosif L, Popa D, et al. Comparative assessment of the functional parameters for metal–ceramic and all-ceramic teeth restorations in prosthetic dentistry: A literature review. Biology (Basel) 2022;11(4):556. DOI: 10.3390/biology11040556.
  17. Rad FA, Succaria FG, Morgano SM. Fracture resistance of porcelain veneered zirconia crowns with exposed lingual zirconia for anterior teeth after thermal cycling: An in vitro study. Saudi Dent J 2015;27(2):63–69. DOI: 10.1016/j.sdentj.2014.11.005.
  18. Mahmood DJH, Linderoth EH, Wennerberg A, et al. Influence of core design, production technique, and material selection on fracture behavior of yttria-stabilized tetragonal zirconia polycrystal fixed dental prostheses produced using different multilayer techniques: Split-file, over-pressing, and manually built-up veneers. Clin Cosmet Investig Dent 2016;8:15–27. DOI: 10.2147/CCIDE.S94343.
  19. Larsson C, Madhoun SE, Wennerberg A, et al. Fracture strength of yttria-stabilized tetragonal zirconia polycrystals crowns with different design: An in vitro study. Clin Oral Implants Res 2012;23(7):820–826. DOI: 10.1111/j.1600-0501.2011.02224.x.
  20. Silva NR, Bonfante EA, Rafferty BT, et al. Modified Y-TZP core design improves all-ceramic crown reliability. J Dent Res 2011;90(1):104–108. DOI: 10.1177/0022034510384617.
  21. Apel E, Deubener J, Bernard A, et al. Phenomena and mechanisms of crack propagation in glass–ceramics. J Mech Behav Biomed Mater 2008;1(4):313–325. DOI: 10.1016/j.jmbbm.2007.11.005.
  22. Lorenzoni FC, Martins LM, Silva NR, et al. Fatigue life and failure modes of crowns systems with a modified framework design. J Dent 2010;38(8):626–634. DOI: 10.1016/j.jdent.2010.04.011.
  23. Bulbule N, Motwani BK. Comparative study of fracture resistance of porcelain in metal–ceramic restorations by using different metal coping designs: An in vitro study. J Clin Diagn Res 2014;8(11):123–127. DOI: 10.7860/JCDR/2014/10336.5203.
  24. Kokubo Y, Tsumita M, Kano T, et al. The influence of zirconia coping designs on the fracture load of all-ceramic molar crowns. Dent Mater J 2011;30(3):281–285. DOI: 10.4012/dmj.2010-130.
  25. Ha SR, Kim SH, Han JS, et al. The influence of various core designs on stress distribution in the veneered zirconia crown: A finite element analysis study. J Adv Prosthodont 2013;5(2):187–197. DOI: 10.4047/jap.2013.5.2.187.
  26. Sawada T, Spintzyk S, Schille C, et al. Influence of different framework designs on the fracture properties of ceria-stabilized tetragonal zirconia/alumina-based all-ceramic crowns. Materials (Basel) 2016;9(5):339. DOI: 10.3390/ma9050339.
  27. Anusavice KJ, Kakar K, Ferree N. Which mechanical and physical testing methods are relevant for predicting the clinical performance of ceramic-based dental prostheses? Clin Oral Implants Res 2007;18:218–231. DOI: 10.1111/j.1600-0501.2007.01460.x.
  28. Mohammed I, Alwahab ZN. An evaluation of the effect of artificial saliva with different pH on shear bond strength of veneering ceramic to metal and zirconia substructure (in vitro study). World J Pharm Res 2017;6(17):30–44. DOI: 10.20959/wjpr201717-10359.
  29. Wang RR, Lu CL, Wang G, et al. Influence of cyclic loading on the fracture toughness and load bearing capacities of all-ceramic crowns. Int J Oral Sci 2014;6(2):99–104.
  30. Yucel MT, Yondem I, Aykent F, et al. Influence of the supporting die structures on the fracture strength of all-ceramic materials. Clin Oral Investig 2012;16(4):1105–1110. DOI: 10.1007/s00784-011-0606-z.
  31. Scherrer SS, de Rijk WG. The fracture resistance of all-ceramic crowns on supporting structures with different elastic moduli. Int J Prosthodont 1993;6(5):462–467. PMID: 8297457.
  32. Chen SE, Park AC, Wang J, et al. Fracture resistance of various thickness e.max CAD lithium disilicate crowns cemented on different supporting substrates: An in vitro study. J Prosthodont 2019;28(9): 997–1004. DOI: 10.1111/jopr.13108.
  33. Strub JR, Beschnidt SM. Fracture strength of 5 different all-ceramic crown systems. Int J Prosthodont 1998;11(6):602–609. PMID: 10023224.
  34. Ulusoy M, Toksavul S. Fracture resistance of five different metal framework designs for metal–ceramic restorations. Int J Prosthodont 2002;15(6):571–574. PMID: 12475164.
  35. Ogino Y, Nomoto S, Sato T. Effect of connector design on fracture resistance in zirconia-based fixed partial dentures for upper anterior region. Bull Tokyo Dent Coll 2016;57(2):65–74. DOI: 10.2209/tdcpublication.2015-0034.
  36. Kelly JR. Clinically relevant approach to failure testing of all-ceramic restorations. J Prosthet Dent 1999;81(6):652–661. DOI: 10.1016/s0022-3913(99)70103-4.
  37. Øilo M, Kvam K, Gjerdet NR. Simulation of clinical fractures for three different all-ceramic crowns. Eur J Oral Sci 2014;122(3):245–250. DOI: 10.1111/eos.12128.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.