The Journal of Contemporary Dental Practice

Register      Login

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue

Online First

Archive
Related articles

VOLUME 25 , ISSUE 11 ( November, 2024 ) > List of Articles

ORIGINAL RESEARCH

Compressive Stress in Teeth Restored with Endocrown and Build-up: A Finite Element Analysis

Katherinne A Bardales-Espinoza, Anderson R Mora-Ipince, Martín A Chávez-Méndez, Claudio Peña-Soto, Javier Flores-Fraile, Myriam A De la Garza-Ramos, Guillermo Cano-Verdugo

Keywords : Build-up, Compressive stress, Endocrown, Finite element analysis

Citation Information : Bardales-Espinoza KA, Mora-Ipince AR, Chávez-Méndez MA, Peña-Soto C, Flores-Fraile J, De la Garza-Ramos MA, Cano-Verdugo G. Compressive Stress in Teeth Restored with Endocrown and Build-up: A Finite Element Analysis. J Contemp Dent Pract 2024; 25 (11):1027-1033.

DOI: 10.5005/jp-journals-10024-3777

License: CC BY-NC 4.0

Published Online: 27-01-2025

Copyright Statement:  Copyright © 2024; The Author(s).


Abstract

Aim: This study evaluates compressive stress in teeth restored with endocrown (ECW) and build-up (BUP) using finite element analysis (FEA). Understanding stress distribution in dental restorations is crucial for improving treatment outcomes and longevity. Materials and methods: A second lower molar was modeled using Solidworks® (Version 2017). The ECW was simulated with nanoceramic resin, while the BUP included a core and nanoceramic crown. Mechanical properties, including modulus of elasticity, Poisson's ratio, and tensile strength were assigned to materials. Axial and oblique loads of 900N were applied, and stress was analyzed using Solidworks®. Results: Results indicated that under axial loading, ECW experienced a maximum stress of 91.9 MPa, significantly higher than BUP's 49 MPa. Under oblique loading, ECW exhibited 132 MPa compared with 116 MPa in BUP. The highest stress concentration was in the cervical area, where ECW showed greater stresses in both the substrate and restored area. Build-up demonstrated better stress distribution and lower fracture risk. Conclusion: Endocrown restoration results in higher compressive stresses, especially in the cervical region, which may increase the risk of fracture. Conversely, the BUP technique, which preserves cervical dentin, offers improved stress distribution and reduced fracture risk, making it a more robust solution for endodontic rehabilitation. Clinical significance: This study underscores the importance of selecting appropriate restoration methods to minimize stress and enhance the longevity of dental treatments, ultimately leading to better patient outcomes.


PDF Share
  1. Tribst JPM, Maria de Dal Piva AO, Muris J, Kleverlaan CJ, et al. One-piece endodontic crown fixed partial denture: Is it possible? 2024;131(6):1118–1125. DOI: 10.1016/j.prosdent.2023.01.014.
  2. Tribst JPM, Dal Piva AM de O, Madruga CFL, et al. Endocrown restorations: Influence of dental remnant and restorative material on stress distribution. Dent Mater 2018;34(10):1466–1473. DOI: 10.1016/j.dental.2018.06.012.
  3. Abtahi S, Alikhasi M, Siadat H. Biomechanical behavior of endocrown restorations with different cavity design and CAD-CAM materials under a static and vertical load: A finite element analysis. J Prosthet Dent 2022;127(4):600.e1–600.e8. DOI: 10.1016/j.prosdent.2021.11.027.
  4. Ausiello P, Ciaramella S, Di Rienzo A, et al. Adhesive class I restorations in sound molar teeth incorporating combined resin-composite and glass ionomer materials: CAD-FE modeling and analysis. Dent Mater 2019;35(10):1514–1522. DOI: 10.1016/j.dental.2019.07.017.
  5. Al-Dabbagh RA. Survival and success of endocrowns: A systematic review and meta-analysis. J Prosthet Dent 2021;125(3):415.e1–415.e9. DOI: 10.1016/j.prosdent.2020.01.011.
  6. Govare N, Contrepois M. Endocrowns: a systematic review. J Prosthet Dent 2020;123(3):411-418.e9. DOI: 10.1016/j.prosdent.2019.04.009.
  7. Gulec L, Ulusoy N. Effect of endocrown restorations with different CAD/CAM materials: 3D finite element and weibull analyses. Biomed Res Int 2017;2017:5638683. DOI: 10.1155/2017/5638683.
  8. Zheng Z, Sun J, Jiang L, et al. Influence of margin design and restorative material on the stress distribution of endocrowns: A 3D finite element analysis. BMC Oral Health 2022;22(1):30. DOI: 10.1186/s12903-022-02063-y.
  9. Zhu J, Rong Q, Wang X, et al. Influence of remaining tooth structure and restorative material type on stress distribution in endodontically treated maxillary premolars: A finite element analysis. J Prosthet Dent 2017;117(5):646–655. DOI: 10.1016/j.prosdent.2016.08.023.
  10. Spinhayer L, Bui ATB, Leprince JG, et al. Core build-up resin composites: an in-vitro comparative study. Biomater Investig Dent 2020;7(1):159–166. DOI: 10.1080/26415275.2020.1838283.
  11. Carvalho AO, Bruzi G, Anderson RE, et al. Influence of adhesive core buildup designs on the resistance of endodontically treated molars restored with lithium disilicate CAD/CAM crowns. Oper Dent 2016;41(1):76–82. DOI: 10.2341/14-277-L.
  12. Magne P, Goldberg J, Edelhoff D, et al. Composite resin core buildups with and without post for the restoration of endodontically treated molars without ferrule. Oper Dent 2016;41(1):64–75. DOI: 10.2341/14-258-L.
  13. Hatayama T, Chiba A, Kainose K, et al. Stress distribution in tooth resin core build-ups with different post-end positions in alveolar bone level under two kinds of load directions. Dent Mater J 2018;37(3):474–483. DOI: 10.4012/dmj.2017-160.
  14. Nascimento AS, Rodrigues de Oliveira LJ, Moura AT, et al. Does ferrule thickness influence resistance to fracture of endodontically treated teeth? J Conserv Dent 2018;21(6):613-617. DOI: 10.4103/JCD.JCD_204_16.
  15. Carvalho MA, Lazari PC, Gresnigt M, et al. Current options concerning the endodontically-treated teeth restoration with the adhesive approach. Braz Oral Res 2018;32(suppl 1):e74. DOI: 10.1590/1807-3107bor-2018.vol32.0074.
  16. Zenthöfer A, Bermejo JL, Bömicke W, et al. Early failures when using three different adhesively retained core build-up materials-a randomized controlled trial. Clin Oral Investig 2022;26(2):1927–1936. DOI: 10.1007/s00784-021-04170-6.
  17. Cheng X, Zhang XY, Qian WH. Influence of different base materials and thicknesses on the fracture resistance of endocrown: A three-dimensional finite element analysis. BMC Oral Health 2022;22(1):363. DOI: 10.1186/s12903-022-02350-8.
  18. Curiqueo A, Salamanca C, Borie E, et al. Evaluación de la Fuerza Masticatoria Máxima Funcional en Adultos Jóvenes Chilenos Evaluation of Functional Maximum Bite Force in Chilean Young Adults. Int J Odontostomat 2015;9(3):443–447. DOI: 10.4067/S0718-381X2015000300014.
  19. Zhong Q, Huang Y, Zhang Y, et al. Finite element analysis of maxillary first molar with a 4-wall defect and 1.5-mm-high ferrule restored with fiber-reinforced composite resin posts and resin core: The number and placement of the posts. J Prosthet Dent 2024;131(1):75–91. DOI: 10.1016/j.prosdent.2022.01.029.
  20. Shams A, Elsherbini M, Elsherbiny AA, et al. Rehabilitation of severely-destructed endodontically treated premolar teeth with novel endocrown system: Biomechanical behavior assessment through 3D finite element and in vitro analyses. J Mech Behav Biomed Mater 2022;126:105031. DOI: 10.1016/j.jmbbm.2021.105031.
  21. Zhang Y, Lai H, Meng Q, et al. The synergetic effect of pulp chamber extension depth and occlusal thickness on stress distribution of molar endocrowns: a 3-dimensional finite element analysis. J Mater Sci Mater Med 2022;33(7):56. DOI: 10.1007/s10856-022-06677-0.
  22. Zheng Z, He Y, Ruan W, et al. Biomechanical behavior of endocrown restorations with different CAD-CAM materials: A 3D finite element and in vitro analysis. J Prosthet Dent 2021;125(6):890–899. DOI: 10.1016/j.prosdent.2020.03.009.
  23. Gresnigt MM, Özcan M, van den Houten ML, et al. Fracture strength, failure type and Weibull characteristics of lithium disilicate and multiphase resin composite endocrowns under axial and lateral forces. Dent Mater 2016;32(5):607–614. DOI: 10.1016/j.dental. 2016.01.
  24. Tribst JPM, de Oliveira Dal Piva AM, Madruga CFL, et al. The impact of restorative material and ceramic thickness on CAD\CAM endocrowns. J Clin Exp Dent 2019;11(11):e969–e977. DOI: 10.4317/jced.56002.
  25. Yıkılgan I, Bala O. How can stress be controlled in endodontically treated teeth? A 3D finite element analysis. ScientificWorldJ 2013;2013:426134. DOI: 10.1155/2013/426134.
  26. Darwich MA, Aljareh A, Alhouri N, et al. Biomechanical assessment of endodontically treated molars restored by endocrowns made from different CAD/CAM materials. Materials (Basel) 2023;16(2):764. DOI: 10.3390/ma16020764.
  27. Tribst JPM, Dal Piva AMO, de Jager N, et al. Full-crown versus endocrown approach: A 3D-analysis of both restorations and the effect of ferrule and restoration material. J Prosthodont 2021;30(4):335–344. DOI: 10.1111/jopr.13244.
  28. da Fonseca GF, de Andrade GS, Dal Piva AMO, et al. Computer-aided design finite element modeling of different approaches to rehabilitate endodontically treated teeth. J Indian Prosthodont Soc 2018;18(4):329–335. DOI: 10.4103/jips.jips_168_18.
  29. Ilawe NV, Zimmerman JA, Wong BM. Breaking badly: DFT-D2 gives sizeable errors for tensile strengths in palladium-hydride solids. J Chem Theory Comput 2015;11(11):5426–5435. DOI: 10.1021/acs.jctc.5b00653.
  30. Zhou J, Liang Y. Reactive molecular dynamics simulation on the structure characteristics and tensile properties of calcium silicate hydrate at various temperatures and strain rates’, Mol Simul 2020;46(15):1181–1190. DOI: 10.1080/08927022.2020.1807543.
  31. Aramfard M, Avanzi L, Nicola L. On the adhesive interaction between metals in atomistic simulations of friction and wear. Tribol Lett 2024;72:80. DOI: 10.1007/s11249-024-01865-1.
  32. Ruiz Pestana LA, Liao Y, Li Z, et al. Chapter Two – Atomistic molecular modeling methods. In: Xia W, Ruiz Pestana LA, editors. Fundamentals of multiscale modeling of structural materials. Elsevier; 2023. pp. 37–73. DOI: 10.1016/B978-0-12-823021-3.00006-3.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.