The Journal of Contemporary Dental Practice

Register      Login

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue

Online First

Archive
Related articles

VOLUME 25 , ISSUE 3 ( March, 2024 ) > List of Articles

ORIGINAL RESEARCH

The Effect of Glycyrrhizin on the Viability and Proliferation of Dental Pulp Stem Cells Compared to Intracanal Medicaments

Mohammad A Alrashidi, Manal F Badawi, Mohamed G Elbeltagy, Amany E Badr

Keywords : Calcium hydroxide, Dental pulp stem cells, Glycyrrhizin, Regenerative endodontics

Citation Information : Alrashidi MA, Badawi MF, Elbeltagy MG, Badr AE. The Effect of Glycyrrhizin on the Viability and Proliferation of Dental Pulp Stem Cells Compared to Intracanal Medicaments. J Contemp Dent Pract 2024; 25 (3):267-275.

DOI: 10.5005/jp-journals-10024-3652

License: CC BY-NC 4.0

Published Online: 19-04-2024

Copyright Statement:  Copyright © 2024; The Author(s).


Abstract

Aim: To study the effect of glycyrrhizin (GA) on the viability and proliferation of dental pulp stem cells (DPSCs) compared with intracanal medicaments. Materials and methods: Third molars of an adult donor were used to obtain the DPSCs. Flow cytometry was utilized to conduct phenotypic analysis for DPSCs. The methyl-thiazol tetrazolium (MTT) test was used to detect the cell viability. Cell proliferation assay was conducted at distinct time intervals: 3, 5, and 7 days. Results: The flow cytometry analysis verified the positive expression of mesenchymal cell surface antigen molecules (CD73, CD90, and CD105) and the absence of hematological markers (CD14, CD34, and CD45) in the DPSCs. The cells that treated with concentrations more than 0.5 mg/mL of Ca(OH2) and triple antibiotic paste (TAP) gave significant decrease in viability in comparison to the untreated cells (p < 0.05). Also, the cells treated with concentrations 50 and 25 µM of GA showed no significant difference compared with the untreated cells (p > 0.05), while concentrations 12.5 and 6.25 µM expressed a significant increase in viability compared with the untreated cells (p < 0.05). At 7 days, cells treated with the three different concentrations of GA (12.5, 25, and 50 µM) demonstrated a significant increase in cell density compared with Ca(OH)2 and TAP-treated cells (p < 0.05). Conclusion: Based upon the potential of GA on DPSCs proliferation compared with Ca(OH)2 and TAP, It is conceivable to acknowledge that GA could be used as an intracanal medicaments for revascularization process of necrotic immature teeth. Clinical significance: This study emphasizes the significance of assessing alternative root canal medicaments and their impact on the proliferation and viability of DPSCs. The results regarding GA, specifically its impact on the viability and growth of DPSCs, provide essential understanding for its potential application as an intracanal medicine. This study adds to the continuous endeavors in identifying safer and more efficient intracanal therapies, which are essential for improving patient outcomes in endodontic operations.


PDF Share
  1. Chueh L-H, Huang GT. Immature teeth with periradicular periodontitis or abscess undergoing apexogenesis: A paradigm shift. J Endod 2006;32(12):1205–1213. DOI: 10.1016/j.joen.2006.07.010.
  2. Huang GT. A paradigm shift in endodontic management of immature teeth: Conservation of stem cells for regeneration. J Dent 2008;36(6):379–386. DOI: 10.1016/j.jdent.2008.03.002.
  3. Huang GT-J, Sonoyama W, Liu Y, et al. The hidden treasure in apical papilla: The potential role in pulp/dentin regeneration and bioroot engineering. J Endod 2008;34(6):645–651. DOI: 10.1016/j.joen.2008.03.001.
  4. Diogenes A, Ruparel NB, Shiloah Y, et al. Regenerative endodontics: A way forward. J Am Dent Assoc 2016;147(5):372–380. DOI: 10.1016/j.adaj.2016.01.009.
  5. Kim D, Kim E. Antimicrobial effect of calcium hydroxide as an intracanal medicament in root canal treatment: A literature review-Part I. In vitro studies. Restor Dent Endod 2014;39(4):241–252. DOI: 10.5395/rde.2014.39.4.241.
  6. Govindaraju L, Jenarthanan S, Subramanyam D, et al. Antibacterial activity of various intracanal medicament against enterococcus faecalis, streptococcus mutans and staphylococcus aureus: An in vitro study. J Pharm Bioallied Sci 2021;13(Suppl 1):S157. DOI: 10.4103/jpbs.JPBS_623_20.
  7. Nagas E, Cehreli Z, Uyanik M, et al. Effect of several intracanal medicaments on the push-out bond strength of ProRoot MTA and Biodentine. Int Endod J 2016;49(2):184–188. DOI: 10.1111/iej.12433.
  8. Patil U, Yeli M, Tapashetti S, et al. Effect of varying durations of intracanal medicament application used in regenerative endodontic treatment on the push-out bond strength of a novel cement: NeoMTA Plus. J Conserv Dent 2019;22(1):48. DOI: 10.4103/JCD.JCD_80_18.
  9. Afkhami F, Pourhashemi SJ, Sadegh M, et al. Antibiofilm efficacy of silver nanoparticles as a vehicle for calcium hydroxide medicament against Enterococcus faecalis. J Dent 2015;43(12):1573–1579. DOI: 10.1016/j.jdent.2015.08.012.
  10. Ballal V, Kundabala M, Acharya S, et al. Antimicrobial action of calcium hydroxide, chlorhexidine and their combination on endodontic pathogens. Aust Dent J 2007;52(2):118–121. DOI: 10.1111/j.1834-7819.2007.tb00475.x.
  11. Saatchi M, Shokraneh A, Navaei H, et al. Antibacterial effect of calcium hydroxide combined with chlorhexidine on Enterococcus faecalis: A systematic review and meta-analysis. J Appl Oral Sci 2014;22: 356–365. DOI: 10.1590/1678-775720140032.
  12. Stojanović N, Krunić J, Popović B, et al. Prevalence of Enterococcus faecalis and Porphyromonas gingivalis in infected root canals and their susceptibility to endodontic treatment procedures: A molecular study. Srp Arh Celok Lek 2014;142(9–10):535–541. DOI: 10.2298/sarh1410535s.
  13. Khurshid Z, Naseem M, Zafar MS, et al. Propolis: A natural biomaterial for dental and oral healthcare. J Dent Res Dent Clin Dent Prospects 2017;11(4):265. DOI: 10.15171/joddd.2017.046.
  14. Sinha DJ, Sinha AA., Natural medicaments in dentistry. AYU (An international quarterly journal of research in Ayurveda), 2014;35(2): pp. 113–118. DOI: 10.4103/0974-8520.146198.
  15. Sedighinia F, Afshar AS, Asili J, et al. Antibacterial activity of Glycyrrhiza glabra against oral pathogens: An in vitro study. Avicenna J Phytomed 2012;2(3):118. PMID: 25050240.
  16. Badr A, Omar N, Badria F. A laboratory evaluation of the antibacterial and cytotoxic effect of Liquorice when used as root canal medicament. Int Endod J 2011;44(1):51–58. DOI: 10.1111/j.1365-2591. 2010.01794.x.
  17. Azizsoltani A, Piri K, Behzad S, et al. Ethyl acetate extract of licorice root (Glycyrrhiza glabra) enhances proliferation and osteogenic differentiation of human bone marrow mesenchymal stem cells. Iran J Pharm Res 2018;17(3):1057. PMID: 30127828.
  18. Fu Y, Zhou E, Wei Z, et al. Glycyrrhizin inhibits the inflammatory response in mouse mammary epithelial cells and a mouse mastitis model. FEBS J 2014;281(11):2543–2557. DOI: 10.1111/febs.12801.
  19. Kim HC, Oh H, You JS, et al. Glycyrrhizin ameliorating sterile inflammation induced by low-dose radiation exposure. Sci Rep 2021;11(1):18356. DOI: 10.1038/s41598-021-97800-8.
  20. Gomaa MA, Elhawary YM, Badr AE. Glycyrrhizin enhances the proliferation of diabetic bone marrow-derived mesenchymal stem cells: A potential therapeutic agent in endodontic surgery. J Contemp Dent Pract 2023;24(7):494–499. DOI: 10.5005/jp-journals-10024-3536.
  21. Suchánek J, Soukup T, Ivancakova R, et al. Human dental pulp stem cells-isolation and long term cultivation. Acta Medica (Hradec Kralove) 2007;50(3):195. PMID: 18254273.
  22. Markossian S, Grossman A, Brimacombe K, et al. Assay guidance manual [Internet]. 2004.
  23. Carbajal M, Aguilar A. Reduction of viable Enterococcus faecalis in human radicular dentin treated with 1% cetrimide and conventional intracanal medicaments. Dent Traumatol 2016;32(4):321–327. DOI: 10.1111/edt.12250.
  24. Van der Sluis L, Versluis M, Wu M, et al. Passive ultrasonic irrigation of the root canal: A review of the literature. Int Endod J 2007;40(6): 415–426. DOI: 10.1111/j.1365-2591.2007.01243.x.
  25. DiFiore PM, Peters DD, Setterstrom JA, et al. The antibacterial effects of calcium hydroxide apexification pastes on Streptococcus sanguis. Oral Surg Oral Med Oral Pathol 1983;55(1):91–94. DOI: 10.1016/0030-4220(83)90313-4.
  26. Adam SH, Abdelsalam N, Darrag A. Comparative evaluation of the cytotoxic effect of different intracanal medicaments. Dental Science Updates 2021;2(2):123–133. DOI: 10.21608/DSU.2021.46129.1051.
  27. Kamat S, Rajeev K, Saraf P. Role of herbs in endodontics: An update. Endodontology 2011;23(1):98–102. DOI: 10.36347/sjds.2022.v09i09.001.
  28. Hauman C, Love R. Biocompatibility of dental materials used in contemporary endodontic therapy: A review. Part 1. Intracanal drugs and substances Int Endod J 2003;36(2):75–85. DOI: 10.1046/j.1365-2591.2003.00631.x.
  29. Camargo S, Camargo C, Hiller KA, et al. Cytotoxicity and genotoxicity of pulp capping materials in two cell lines. Int Endod J 2009;42(3): 227–237. DOI: 10.1111/j.1365-2591.2008.01506.x.
  30. Feng X, Ding L, Qiu F. Potential drug interactions associated with glycyrrhizin and glycyrrhetinic acid. Drug Metab Rev 2015;47(2): 229–238. DOI: 10.3109/03602532.2015.1029634.
  31. Sun Z-G, Zhao T-T, Lu N, et al. Research progress of glycyrrhizic acid on antiviral activity. Mini Rev Med Chem 2019;19(10):826–832. DOI: 10.2174/1389557519666190119111125.
  32. Haapasalo M, Udnæs T, Endal U. Persistent, recurrent, and acquired infection of the root canal system post-treatment. Endod Topics 2003;6(1):29–56. DOI: 10.1111/j.1601-1546.2003.00041.x.
  33. Nazari S, Rameshrad M, Hosseinzadeh H. Toxicological effects of Glycyrrhiza glabra (licorice): A review. Phytother Res 2017;31(11): 1635–1650. DOI: 10.1002/ptr.5893.
  34. Yoshino T, Shimada S, Homma M, et al. Clinical risk factors of licorice-induced pseudoaldosteronism based on glycyrrhizin-metabolite concentrations: A narrative review. Front Nutr 2021;8:719197. DOI: 10.3389/fnut.2021.719197.
  35. Bai J, Xu J, Hang K, et al. Glycyrrhizic acid promotes osteogenic differentiation of human bone marrow stromal cells by activating the Wnt/β-catenin signaling pathway. Front Pharmacol 2021;12:607635. DOI: 10.3389/fphar.2021.607635.
  36. Dong Q, Wang Y, Mohabatpour F, et al. Dental pulp stem cells: Isolation, characterization, expansion, and odontoblast differentiation for tissue engineering. Methods Mol Biol 2019:91–101. DOI: 10.1007/978-1-4939-9012-2_9.
  37. Alsalleeh F, Stephenson GL, Lyons N, et al. Human periodontal ligament cells response to commercially available calcium hydroxide pastes. Int J Dentistry Oral Sci 2014;2(1):6–9.
  38. Endodontists AAo. AAE clinical considerations for a regenerative procedure. In: American association of Endodontists Chicago, IL, USA; 2016.
  39. Huang X-F, Yuan S-J, Yang C. Effects of total flavonoids from Drynaria fortunei on the proliferation and osteogenic differentiation of rat dental pulp stem cells. Mol Med Rep 2012;6(3):547–552. DOI: 10.3892/mmr.2012.974.
  40. Xu H, Fang L, Zeng Q, et al. Glycyrrhizic acid alters the hyperoxidative stress-induced differentiation commitment of MSCs by activating the Wnt/β-catenin pathway to prevent SONFH. Food Funct 2023;14(2):946–960. DOI: 10.1039/d2fo02337g.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.