Citation Information :
Alshawkani HA, Mansy M, Al Ankily M, Shamel M. Regenerative Potential of Dental Pulp Stem Cells in Response to a Bioceramic Dental Sealer and Photobiomodulation: An In Vitro Study. J Contemp Dent Pract 2024; 25 (4):313-319.
Aims: This study aims to assess the synergistic effect of utilizing a bioceramic sealer, NeoPutty, with photobiomodulation (PBM) on dental pulp stem cells (DPSCs) for odontogenesis.
Materials and methods: Dental pulp stem cells were collected from 10 premolars extracted from healthy individuals. Dental pulp stem cells were characterized using an inverted-phase microscope to detect cell shape and flow cytometry to detect stem cell-specific surface antigens. Three experimental groups were examined: the NP group, the PBM group, and the combined NP and PBM group. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) experiment was conducted to assess the viability of DPSCs. The odontogenic differentiation potential was analyzed using Alizarin red staining, RT-qPCR analysis of odontogenic genes DMP-1, DSPP, and alkaline phosphatase (ALP), and western blot analysis for detecting BMP-2 and RUNX-2 protein expression. An analysis of variance (ANOVA) followed by a post hoc t-test was employed to examine and compare the mean values of the results.
Results: The study showed a notable rise in cell viability when NP and PBM were used together. Odontogenic gene expression and the protein expression of BMP-2 and RUNX-2 were notably increased in the combined group. The combined effect of NeoPutty and PBM was significant in enhancing the odontogenic differentiation capability of DPSCs.
Conclusion: The synergistic effect of NeoPutty and PBM produced the most positive effect on the cytocompatibility and odontogenic differentiation potential of DPSCs.
Clinical significance: Creating innovative regenerative treatments to efficiently and durably repair injured dental tissues.
Das S, Srivastava R, Thosar NR, et al. Regenerative endodontics-reviving the pulp the natural way: A case report. Cureus 2023;15(3):e36587. DOI: 10.7759/cureus.36587.
Lee BN, Moon JW, Chang HS, et al. A review of the regenerative endodontic treatment procedure. Restor Dent Endod 2015;40(3): 179–187. DOI: 10.5395/rde.2015.40.3.179.
Iaculli F, Rodriguez-Lozano FJ, Briseno-Marroquin B, et al. Vital pulp therapy of permanent teeth with reversible or irreversible pulpitis: An overview of the literature. J Clin Med 2022;11(14):4016. DOI: 10.3390/jcm11144016.
Kahler B, Taha NA, Lu J, et al. Vital pulp therapy for permanent teeth with diagnosis of irreversible pulpitis: Biological basis and outcome. Aust Dent J 2023;68 Suppl 1:S110–S22. DOI: 10.1111/adj.12997.
Asgary S, Roghanizadeh L, Eghbal MJ, et al. Outcomes and predictive factors of vital pulp therapy in a large-scale retrospective cohort study over 10 years. Sci Rep 2024;14(1):2063. DOI: 10.1038/s41598-024-52654-8.
Dong X, Xu X. Bioceramics in endodontics: Updates and future perspectives. Bioengineering (Basel) 2023;10(3):354. DOI: 10.3390/bioengineering10030354.
Hanna SN, Perez Alfayate R, Prichard J. Vital pulp therapy an insight over the available literature and future expectations. Eur Endod J 2020;5(1):46–53. DOI: 10.14744/eej.2019.44154.
Bakr MM, Shamel M, Raafat SN, et al. Effect of pulp capping materials on odontogenic differentiation of human dental pulp stem cells: An in vitro study. Clin Exp Dent Res 2024;10(1):e816. DOI: 10.1002/cre2.816.
Alhazmi YA, Aljabri MY, Raafat SN, et al. Exploring the effects of low-level laser therapy on the cytocompatibility and osteo/odontogenic potential of gingival-derived mesenchymal stem cells: Preliminary report. Appl Sci 2023;13(14):8490. DOI: 10.3390/app13148490.
Rathod A, Jaiswal P, Bajaj P, et al. Implementation of low-level laser therapy in dentistry: A review. Cureus 2022;14(9):e28799. DOI: 10.7759/cureus.28799.
Gutierrez D, Rouabhia M, Ortiz J, et al. Low-level laser irradiation promotes proliferation and differentiation on apical papilla stem cells. J Lasers Med Sci 2021;12:e75. DOI: 10.34172/jlms.2021.75.
Sivakumar TT, Muruppel AM, Joseph AP, et al. Photobiomodulatory effect delivered by low-level laser on dental pulp stem cell differentiation for osteogenic lineage. Lasers Dent Sci 2019;3(3): 175–181. DOI: 10.1007/s41547-019-00066-7.
Wang L, Liu C, Song Y, et al. The effect of low-level laser irradiation on the proliferation, osteogenesis, inflammatory reaction, and oxidative stress of human periodontal ligament stem cells under inflammatory conditions. Lasers Med Sci 2022;37(9):3591–3599. DOI: 10.1007/s10103-022-03638-5.
Saber S, Raafat S, Elashiry M, et al. Effect of different sealers on the cytocompatibility and osteogenic potential of human periodontal ligament stem cells: An in vitro study. J Clin Med 2023;12(6):2344. DOI: 10.3390/jcm12062344.
Eslaminejad MB, Bordbar S, Nazarian H. Odontogenic differentiation of dental pulp-derived stem cells on tricalcium phosphate scaffolds. J Dent Sci 2013;8(3):306–313. DOI: 10.1016/j.jds.2013.03.005.
Tabari K, Hosseinpour S, Parashos P, et al. Cytotoxicity of selected nanoparticles on human dental pulp stem cells. Iran Endod J 2017;12(2):137–142. DOI: 10.22037/iej.2017.28.
Ahmed B, Ragab MH, Galhom RA, et al. Evaluation of dental pulp stem cells behavior after odontogenic differentiation induction by three different bioactive materials on two different scaffolds. BMC Oral Health 2023;23(1):252. DOI: 10.1186/s12903-023-02975-3.
Koh B, Ab Rahman FH, Matlan NA, et al. Potential role of dental pulp stem cells conditioned medium for odontoblastic differentiation. Biol Res 2022;55(1):11. DOI: 10.1186/s40659-022-00380-8.
Ching HS, Luddin N, Rahman IA, et al. Expression of odontogenic and osteogenic markers in DPSCs and SHED: A review. Curr Stem Cell Res Ther 2017;12(1):71–79. DOI: 10.2174/1574888x11666160815095733.
Luo X, Feng W, Huang S, et al. Odontoblasts release exosomes to regulate the odontoblastic differentiation of dental pulp stem cells. Stem Cell Res Ther 2023;14(1):176. DOI: 10.1186/s13287-023-03401-9.
Yang D, Solidum JGN, Park D. Dental pulp stem cells and current in vivo approaches to study dental pulp stem cells in pulp injury and regeneration. J Bone Metab 2023;30(3):231–244. DOI: 10.11005/jbm.2023.30.3.231.
Lozano-Guillen A, Lopez-Garcia S, Rodriguez-Lozano FJ, et al. Comparative cytocompatibility of the new calcium silicate-based cement NeoPutty versus NeoMTA Plus and MTA on human dental pulp cells: an in vitro study. Clin Oral Investig 2022;26(12):7219–7228. DOI: 10.1007/s00784-022-04682-9.
Al-Asmar AA, Abuarqoub D, Ababneh N, et al. Potential effects of photobiomodulation therapy on human dental pulp stem cells. Appl Sci 2023;14(1):124. DOI: 10.3390/app14010124.
Firoozi P, Amiri MA, Soghli N, et al. The role of photobiomodulation on dental-derived stem cells in regenerative dentistry: A comprehensive systematic review. Curr Stem Cell Res Ther 2024;19(4):559–586. DOI: 10.2174/1574888X17666220810141411.
Hamblin MR. Mechanisms and mitochondrial redox signaling in photobiomodulation. Photochem Photobiol 2018;94(2):199–212. DOI: 10.1111/php.12864.
Hendi SS, Gholami L, Saidijam M, et al. Photobiomodulation of inflamed dental pulp stem cells under different nutritional conditions. Regen Med 2022;17(2):69–80. DOI: 10.2217/rme-2021-0056.
Yong J, Groger S, Wu Z, et al. Photobiomodulation therapy and pulp-regenerative endodontics: A narrative review. Bioengineering (Basel) 2023;10(3):371. DOI: 10.3390/bioengineering10030371.
Zhang X, Li H, Tang L, et al. Photobiomodulation therapy enhances neural differentiation of dental pulp stem cells via ERK1/2 signaling pathway. Photochem Photobiol 2024;100(3):646–655. DOI: 10.1111/php.13864.
Assadian H, Khojasteh A, Ebrahimian Z, et al. Comparative evaluation of the effects of three hydraulic calcium silicate cements on odontoblastic differentiation of human dental pulp stem cells: An in vitro study. J Appl Oral Sci 2022;30:e20220203. DOI: 10.1590/1678-7757-2022-0203.
Jung Y, Yoon JY, Dev Patel K, et al. Biological effects of tricalcium silicate nanoparticle-containing cement on stem cells from human exfoliated deciduous teeth. Nanomaterials (Basel) 2020;10(7):1373. DOI: 10.3390/nano10071373.
Li X, Pedano MS, Li S, et al. Preclinical effectiveness of an experimental tricalcium silicate cement on pulpal repair. Mater Sci Eng C Mater Biol Appl 2020;116:111167. DOI: 10.1016/j.msec.2020.111167.
Ezawa N, Akashi Y, Nakajima K, et al. The effects of tricalcium-silicate-nanoparticle-containing cement: In vitro and in vivo studies. Materials (Basel) 2023;16(12):4451. DOI: 10.3390/ma16124451.
Ji M, Chen H, Yan Y, et al. Effects of tricalcium silicate/sodium alginate/calcium sulfate hemihydrate composite cements on osteogenic performances in vitro and in vivo. J Biomater Appl 2020;34(10): 1422–1436. DOI: 10.1177/0885328220907784.
Dawoud LE, Hegazy EM, Galhom RA, et al. Photobiomodulation therapy upregulates the growth kinetics and multilineage differentiation potential of human dental pulp stem cells-an in vitro Study. Lasers Med Sci 2022;37(3):1993–2003. DOI: 10.1007/s10103-021-03461-4.
Shamel M, Raafat S, El Karim I, et al. Photobiomodulation and low-intensity pulsed ultrasound synergistically enhance dental mesenchymal stem cells viability, migration and differentiation: An invitro study. Odontology 2024. DOI: 10.1007/s10266-024-00920-6.
Haniastuti T, Susilowati H, Rinastiti M. Viability and alkaline phosphatase activity of human dental pulp cells after exposure to yellowfin tuna bone-derived hydroxyapatite in vitro. Int J Dent 2020;2020:8857534. DOI: 10.1155/2020/8857534.
Toth F, Gall JM, Tozser J, et al. Effect of inducible bone morphogenetic protein 2 expression on the osteogenic differentiation of dental pulp stem cells in vitro. Bone 2020;132:115214. DOI: 10.1016/j.bone.2019.115214.
Chen S, Xie H, Zhao S, et al. The genes involved in dentinogenesis. Organogenesis 2022;18(1):1–19. DOI: 10.1080/15476278.2021.2022373.