The Journal of Contemporary Dental Practice

Register      Login

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue

Online First

Archive
Related articles

VOLUME 25 , ISSUE 5 ( May, 2024 ) > List of Articles

ORIGINAL RESEARCH

Impact of Freeze-dried Corticocancellous Bone Allograft Combined with Enamel Matrix Derivative in the Treatment of Critical-sized Calvarial Bone Defects: An Animal Study

Rouida N Zakri, Mohammed E Grawish, Bassant Mowafey, Jilan Youssef

Keywords : Bone defect, Enamel matrix derivative, Freeze-dried bone allograft

Citation Information : Zakri RN, Grawish ME, Mowafey B, Youssef J. Impact of Freeze-dried Corticocancellous Bone Allograft Combined with Enamel Matrix Derivative in the Treatment of Critical-sized Calvarial Bone Defects: An Animal Study. J Contemp Dent Pract 2024; 25 (5):424-431.

DOI: 10.5005/jp-journals-10024-3697

License: CC BY-NC 4.0

Published Online: 05-08-2024

Copyright Statement:  Copyright © 2024; The Author(s).


Abstract

Aim: This study compared the quality and quantity of newly formed bone in rabbits’ critical-sized calvarial defects filled with enamel matrix derivative (EMD) combined with freeze-dried bone allograft (FDBA) vs FDBA alone. Materials and methods: A total of 24 adult male white New Zealand rabbits were included. In each rabbit, three bone defects with a diameter of 8 mm were created on the calvarium bone; the first defect was left untreated, while the second was filled with FDBA, and the third was filled with EMD + FDBA. Twelve rabbits were randomly euthanized after a month, and the remaining 2 month postsurgery. Bone sections were histologically evaluated by hematoxylin and eosin and vascular endothelial growth factor (VEGF), alkaline phosphatase (ALP), osteoprotegerin (OPG), and receptor activator of NF-kappaB (RANK) immune-histochemical staining. Results: An improvement in the newly formed bone percentage was found in the defects filled with EMD + FDBA in comparison with FDBA and control defects at 1 month and 2 months postsurgery. Additionally, the expression of VEGF, ALP, OPG, and RANK showed highly significant differences in the defects filled with EMD + FDBA compared to the FDBA and control ones at 1 month postsurgery (p = 0.001). Meanwhile, VEGF and ALP expression showed a significant decrease in defects filled with EMD + FDBA compared to the FDBA and control ones (p = 0.001), while OPG and RANK expression showed non-significant differences between treated groups at 2 months postsurgery. Conclusion: Enamel matrix derivative combined with FDBA has a synergistic effect on bone formation and graft substitution. This combination accelerates the expression of VEGF, ALP, OPG, and RANK. Clinical significance: The combination of EMD and FDBA accelerates and ameliorates the quality of newly formed bone, aiding in maxillofacial reconstruction.


PDF Share
  1. Battafarano G, Rossi M, De Martino V, et al. Strategies for bone regeneration: From graft to tissue engineering. Int j Mol Sci 2021;22(3):1128. DOI: 10.3390/ijms22031128.
  2. Sakkas A, Wilde F, Heufelder M, et al. Autogenous bone grafts in oral implantology-is it still a “gold standard”? A consecutive review of 279 patients with 456 clinical procedures. Int J Implant Dent 2017;3(1):23. DOI: 10.1186/s40729-017-0084-4.
  3. Katz MS, Ooms M, Heitzer M, et al. Postoperative morbidity and complications in elderly patients after harvesting of iliac crest bone grafts. Medicina 2021;57(8):759. DOI: 10.3390/medicina57080759.
  4. Al-Abedalla K, Torres J, Cortes ARG, et al. Bone augmented with allograft onlays for implant placement could be comparable with native bone. J Oral Maxillofac Surg 2015;73(11):2108–2122. DOI: 10.1016/j.joms.2015.06.151.
  5. Schlee M, Dehner JF, Baukloh K, et al. Esthetic outcome of implant-based reconstructions in augmented bone: Comparison of autologous and allogeneic bone block grafting with the pink esthetic score (PES). Head Face Med 2014;10(1):21. DOI: 10.1186/1746-160X- 10-21.
  6. Hoexter DL. Bone regeneration graft materials. J Oral Implantol 2002;28(6):290–294. DOI: 10.1563/1548-1336(2002)028<0290: BRGM>2.3.CO;2.
  7. Lorenz J, Schlee M, Al-Maawi S, et al. Variant purification of an allogeneic bone block. Acta Stomatol Croat 2017;51(2):141–147. DOI: 10.15644/asc51/2/7.
  8. Solakoglu Ö, Götz W, Heydecke G, et al. Histological and immunohistochemical comparison of two different allogeneic bone grafting materials for alveolar ridge reconstruction: A prospective randomized trial in humans. Clin Implant Dent Relat Res 2019;21(5):1002–1016. DOI: 10.1111/cid.12824.
  9. Wen SC, Barootchi S, Huang WX, et al. Time analysis of alveolar ridge preservation using a combination of mineralized bone-plug and dense-polytetrafluoroethylene membrane: A histomorphometric study. J Periodontol 2020; 91(2):215–222. DOI: 10.1002/JPER. 19-0142.
  10. Lyngstadaas SP, Lundberg E, Ekdahl H, et al. Autocrine growth factors in human periodontal ligament cells cultured on enamel matrix derivative. J Clin Periodontol 2001;28(2):181–188. DOI: 10.1034/j.1600-051x.2001.028002181.x.
  11. Cochran D, King G, Schoolfield J, et al. The effect of enamel matrix proteins on periodontal regeneration as determined by histological analyses. J periodontol 2003;74(7):1043–1055. DOI: 10.1902/jop.2003.74.7.1043.
  12. Meng M, Xia Q, Li Y, et al. Enamel matrix derivative expedites osteogenic differentiation of BMSCs via Wnt/β-catenin pathway in high glucose microenvironment. J Bone Miner Metab 2022;40(3): 448–459. DOI: 10.1007/s00774-022-01318-6.
  13. Kothiwale S, Bhimani R, Kaderi M, et al. Comparative study of DFDBA and FDBA block grafts in combination with chorion membrane for the treatment of periodontal intra-bony defects at 12 months post surgery. Cell Tissue Bank 2019. DOI: 10.1007/s10561-018-09744-5.
  14. Park JS, Pabst AM, Ackermann M, et al. Biofunctionalization of porcine-derived collagen matrix using enamel matrix derivative and platelet-rich fibrin: Influence on mature endothelial cell characteristics in vitro. Clin Oral Investig 2018;22(2):909–917. DOI: 10.1007/s00784-017-2170-7.
  15. Lim J, Lee J, Yun HS, et al. Comparison of bone regeneration rate in flat and long bone defects: Calvarial and tibial bone. Tissue Eng Regen Med 2013;10:336–340. DOI: 10.1007/s13770-013-1094-9.
  16. Pripatnanont P, Nuntanaranont T, Vongvatcharanon S. Proportion of deproteinized bovine bone and autogenous bone affects bone formation in the treatment of calvarial defects in rabbits. Int J Oral Maxillofac Surg 2009;38(4):356–362. DOI: 10.1016/j.ijom.2009.02.015.
  17. Shahriari S, Houshmand B, Razavian H, et al. Effect of the combination of enamel matrix derivatives and deproteinized bovine bone materials on bone formation in rabbits’ calvarial defects. Dent Res J 2012;9(4):422–426. PMID: 23162582.
  18. Jung J, Park JS, Dard M, et al. Effect of enamel matrix derivative liquid combined with synthetic bone substitute on bone regeneration in a rabbit calvarial model. Clin Oral Investig 2021;25(2):547–554. DOI: 10.1007/s00784-020-03473-4.
  19. Hu K, Olsen BR. The roles of vascular endothelial growth factor in bone repair and regeneration. Bone 2016;91:30–38. DOI: 10.1016/j.bone.2016.06.013.
  20. Stegen S, Carmeliet G. The skeletal vascular system–Breathing life into bone tissue. Bone 2018;115:50–58. DOI: 10.1016/j.bone.2017.08.022.
  21. Miron RJ, Sculean A, Cochran DL, et al. Twenty years of enamel matrix derivative: The past, the present and the future. J Clin Periodontol 2016;43(8):668–683. DOI: 10.1111/jcpe.12546.
  22. Yuan K, Chen CL, Lin MT. Enamel matrix derivative exhibits angiogenic effect in vitro and in a murine model. J Clin periodontol 2003;30(8):732–738. DOI: 10.1034/j.1600-051X.2003.00413.x.
  23. Youssef AR, Emara R, Taher MM, et al. Effects of mineral trioxide aggregate, calcium hydroxide, biodentine and emdogain on osteogenesis, odontogenesis, angiogenesis and cell viability of dental pulp stem cells. BMC Oral Health 2019;19(1):133. DOI: 10.1186/s12903-019-0827-0.
  24. Blair HC, Larrouture QC, Li Y, et al. Osteoblast differentiation and bone matrix formation in vivo and in vitro. Tissue Eng Part B Rev 2017;23(3):268–280. DOI: 10.1089/ten.teb.2016.0454.
  25. Thangakumaran S, Sudarsan S, Arun K, et al. Osteoblast response (initial adhesion and alkaline phosphatase activity) following exposure to a barrier membrane/enamel matrix derivative combination. Indian J Dent Res 2009;20(1):7–12. DOI: 10.4103/0970-9290.49048.
  26. Reseland JE, Reppe S, Larsen AM, et al. The effect of enamel matrix derivative on gene expression in osteoblasts. Eur J Oral Sci 2006;114(s1):205–211. DOI: 10.1111/j.1600-0722.2006.00333.x.
  27. Grandin HM, Gemperli AC, Dard M. Enamel matrix derivative: A review of cellular effects in vitro and a model of molecular arrangement and functioning. Tissue Eng Part B Rev 2012;18(3):181–202. DOI: 10.1089/ten.teb.2011.0365.
  28. Lee AZ, Jiang J, He J, et al. Stimulation of cytokines in osteoblasts cultured on enamel matrix derivative. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008;106(1):133–138. DOI: 10.1016/j.tripleo.2008.01.030.
  29. Carinci F, Piattelli A, Guida L, et al. Effects of Emdogain on osteoblast gene expression. Oral Dis 2006;12(3):329–342. DOI: 10.1111/j.1601-0825.2005.01204.x.
  30. Van den Dolder J, Vloon A, Jansen J. The effect of Emdogain® on the growth and differentiation of rat bone marrow cells. J Periodontal Res 2006;41(5):471–476. DOI: 10.1111/j.1600-0765.2006.00894.x.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.