The Journal of Contemporary Dental Practice

Register      Login

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue

Online First

Archive
Related articles

VOLUME 19 , ISSUE 10 ( 2018 ) > List of Articles

ORIGINAL ARTICLE

Skeletal Age-related Changes of Midpalatal Suture Densities in Skeletal Maxillary Constriction Patients: CBCT Study

Rania Hadad, Dani A Samra

Keywords : Cervical vertebral maturation index, Cone-beam computed tomography, Midpalatal suture, Rapid maxillary expansion, Surgically assisted rapid maxillary expansion.

Citation Information : Hadad R, Samra DA. Skeletal Age-related Changes of Midpalatal Suture Densities in Skeletal Maxillary Constriction Patients: CBCT Study. J Contemp Dent Pract 2018; 19 (10):1260-1266.

DOI: 10.5005/jp-journals-10024-2414

License: CC BY-NC 3.0

Published Online: 00-10-2018

Copyright Statement:  Copyright © 2018; Jaypee Brothers Medical Publishers (P) Ltd.


Abstract

Aim: To determine if density measurements of the midpalatal suture and cervical vertebral maturation index (CVMI) are related, and to investigate if CVMI could help in predicting of the developmental status of the midpalatal suture. Materials and methods: Cone-beam computed tomography (CBCT) images of 95 skeletal maxillary constriction patients (aged 8 to 18 years) were examined. The maturational stages of the cervical vertebrae were visually defined, and midpalatal suture density in the anterior region, the middle region, and the posterior region were measured. One-way ANOVA and Fisher\'s least significant difference (LSD) post-hoc test were used for statistical assessment. Results: Significant differences were found in MPDS: in anterior region between (c1, c2, c3, c4) and (c5, c6) stages, in middle region between (c1, c2, c3) and (c5, c6) stages, and in posterior region between (c1, c2, c3) and (c4, c5, c6) stages. Conclusion: Midpalatal suture densities in all regions increase with skeletal maturation advancement. The significant increase after puberty may have the key role in decreasing the skeletal effects of RME after that age. Clinical significances: It is important to assess the midpalatal suture density to choose between rapid maxillary expansion (RME) and surgically assisted rapid maxillary expansion (SARME). This study revealed a significant increase in the midpalatal suture density after puberty. Thus, it may better to perform RME before puberty.


PDF Share
  1. Sygouros A, Motro M, Ugurlu F, Acar A. Surgically assisted rapid maxillary expansion: cone-beam computed tomography evaluation of different surgical techniques and their effects on the maxillary dentoskeletal complex. Am J Orthod Dentofacial Orthop. 2014;146:748–757.
  2. Proffit WR, Fields HW, Sarver DM. Orthodontic Treatment Planning: Limtaions, Controversies, and Special Problems. In: Proffit WR, Fields HW, Sarver DM, editors. Contemporary Orthodontics. 4th ed. St. Louis: Mosby Elsevier; 2007. p. 284,285,286.
  3. Suri L, Taneja P. Surgically assisted rapid palatal expansion: a literature review. Am J Orthod Dentofac Orthop. 2008;133:290–302.
  4. Angell EC. Treatment of irregularities of the permanent or adult teeth. Dent Cosmos. 1860;1:599–601.
  5. Haas AJ. Palatal expansion: just the beginning of dentofacial orthopedics. Am J Orthod Dentofac Orthop. 1970;57:219–255.
  6. Haas AJ. Rapid Expansion of the Maxillary dental arch and nasal cavity by opening the midpalatal suture. Angle Orthod. 1961;31:73–90.
  7. Acar YB, Motro M, Erverdi AN. Hounsfield Units: A new indicator showing maxillary resistance in rapid maxillary expansion cases? Angle Orthod. 2014;85:109–116.
  8. Korbmacher H, Schilling A, Püschel K, Amling M, Kahl- Nieke B. Age-dependent three-dimensional microcomputed tomography analysis of the human midpalatal suture. J Orofac Orthop. 2007;68:364–376.
  9. Knaup B, Yildizhan F, Wehrbein H. Age-related changes in the midpalatal suture. A histomorphometric study. J Orofac Orthop. 2004;65:467–474.
  10. Wehrbein H, Yildizhan F. The mid-palatal suture in young adults. A radiological-histological investigation. Eur J Orthod. 2001;23:105–114.
  11. Revelo B, Fishman LS. Maturational evaluation of ossification of the midpalatal suture. Am J Orthod Dentofac Orthop. 1994;105:288–292.
  12. Angelieri F, Franchi L, Cevidanes LHS, McNamara JA. Diagnostic performance of skeletal maturity for the assessment of midpalatal suture maturation. Am J Orthod Dentofac Orthop. 2015;148:1010–1016.
  13. Baccetti T, Franchi L, Cameron CG, McNamara JA. Treatment timing for rapid maxillary expansion. Angle Orthod. 2001;71:343–350.
  14. Grünheid T, Larson CE, Larson BE. Midpalatal suture density ratio: A novel predictor of skeletal response to rapid maxillary expansion. Am J Orthod Dentofac Orthop. 2017;151:267–276.
  15. Koudstaal MJ, Poort LJ, van der Wal KGH, Wolvius EB, Prahl-Andersen B, Schulten AJM. Surgically assisted rapid maxillary expansion (SARME): a review of the literature. Int J Oral Maxillofac Surg. 2005;34:709–714.
  16. Liu S, Xu T, Zou W. Effects of rapid maxillary expansion on the midpalatal suture: a systematic review. Eur J Orthod. 2015;37:651–655.
  17. Angelieri F, Cevidanes LHS, Franchi L, Gonçalves JR, Benavides E, McNamara J a. Midpalatal suture maturation: Classification method for individual assessment before rapid maxillary expansion. Am J Orthod Dentofac Orthop. 2013;144:759–769.
  18. Angelieri F, Franchi L, Cevidanes LHS, Gonçalves JR, Nieri M, Wolford LM, et al. Cone beam computed tomography evaluation of midpalatal suture maturation in adults. Int J Oral Maxillofac Surg. 2017;46:1557–1561.
  19. Tonello DL, Ladewig V de M, Guedes FP, Ferreira Conti AC de C, Almeida-Pedrin RR, Capelozza-Filho L. Midpalatal suture maturation in 11- to 15-year-olds: A cone-beam computed tomographic study. Am J Orthod Dentofac Orthop. 2017;152:42–48.
  20. Baccetti T, Franchi L, McNamara JA. An improved version of the cervical vertebral maturation (CVM) method for the assessment of mandibular growth. Angle Orthod. 2002;72:316–323.
  21. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159–174.
  22. Dahiya K, Kumar N, Bajaj P, Sharma A, Sikka R, Dahiya S. Qualitative Assessment of Reliability of Cone-beam Computed Tomography in evaluating Bone Density at Posterior Mandibular Implant Site. J Contemp Dent Pr. 2018;19:426–430.
  23. Cassetta M, Stefanelli LV, Pacifici A, Pacifici L, Barbato E. How accurate is CBCT in measuring bone density? A comparative CBCT-CT in vitro study. Clin Implant Dent Relat Res. 2014;16:471–478.
  24. González-García R, Monje F. The reliability of cone-beam computed tomography to assess bone density at dental implant recipient sites: a histomorphometric analysis by micro-CT. Clin Oral Implants Res. 2013;24:871–879.
  25. Han S, Bayome M, Lee J, Lee Y-J, Song H-H, Kook Y-A. Evaluation of palatal bone density in adults and adolescents for application of skeletal anchorage devices. Angle Orthod. 2012;82:625–631.
  26. Lagravère MO, Fang Y, Carey J, Toogood RW, Packota G V, Major PW. Density conversion factor determined using a cone-beam computed tomography unit New Tom QR-DVT 9000. Dentomaxillofac Radiol. 2006;35:407–409.
  27. Razi T, Niknami M, Alavi Ghazani F. Relationship between Hounsfield Unit in CT Scan and Gray Scale in CBCT. J Dent Res Dent Clin Dent Prospects. 2014;8:107–110.
  28. Poggio PM, Incorvati C, Velo S, Carano A. “Safe Zones”: A Guide for Miniscrew Positioning in the Maxillary and Mandibular Arch. Angle Orthod. 2006;76:191–197.
  29. Pauwels R, Nackaerts O, Bellaiche N, Stamatakis H, Tsiklakis K, Walker A, et al. Variability of dental cone beam CT grey values for density estimations. Br J Radiol. 2013;86:20120135.
  30. Parsa A, Ibrahim N, Hassan B, Motroni A, van der Stelt P, Wismeijer D. Reliability of voxel gray values in cone beam computed tomography for preoperative implant planning assessment. Int J Oral Maxillofac Implants. 2012;27:1438.
  31. Parsa A, Ibrahim N, Hassan B, van der Stelt P, Wismeijer D. Bone quality evaluation at dental implant site using multislice CT, micro-CT, and cone beam CT. Clin Oral Implants Res. 2015;26:e1-7.
  32. Nomura Y, Watanabe H, Honda E, Kurabayashi T. Reliability of voxel values from cone-beam computed tomography for dental use in evaluating bone mineral density. Clin Oral Implants Res. 2010;21:558–562.
  33. Naitoh M, Hirukawa A, Katsumata A, Ariji E. Evaluation of voxel values in mandibular cancellous bone: relationship between cone-beam computed tomography and multislice helical computed tomography. Clin Oral Implants Res. 2009;20:503–506.
  34. Thadani M, Shenoy U, Patle B, Kalra A, Goel S, Toshinawal N. Midpalatal Suture Ossification and Skeletal Maturation : A Comparative Computerized Tomographic Scan and Roentgenographic Study. J Indian Acad Oral Med Radiol. 2010;22:81–87.
  35. Bell WH, Jacobs JD. Surgical-orthodontic correction of horizontal maxillary deficiency. J Oral Surg. 1979;37:897– 902.
  36. Chaconas SJ, Caputo AA. Observation of orthopedic force distribution produced by maxillary orthodontic appliances. Am J Orthod. 1982;82:492–501.
  37. Lee SC, Park JH, Bayome M, Kim KB, Araujo EA, Kook Y-A. Effect of bone-borne rapid maxillary expanders with and without surgical assistance on the craniofacial structures using finite element analysis. Am J Orthod Dentofac Orthop. 2014;145:638–648.
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.