The Journal of Contemporary Dental Practice

Register      Login

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue

Online First

Archive
Related articles

VOLUME 20 , ISSUE 10 ( October, 2019 ) > List of Articles

Original Research

Development of New Experimental Dentifrice of Peruvian Solanum tuberosum (Tocosh) Fermented by Water Stress: Antibacterial and Cytotoxic Activity

Sonia Sacsaquispe-Contreras

Keywords : Antibacterial, Cytotoxic, Dentifrice, Solanum tuberosum, Tocosh

Citation Information : Sacsaquispe-Contreras S. Development of New Experimental Dentifrice of Peruvian Solanum tuberosum (Tocosh) Fermented by Water Stress: Antibacterial and Cytotoxic Activity. J Contemp Dent Pract 2019; 20 (10):1206-1211.

DOI: 10.5005/jp-journals-10024-2681

License: CC BY-NC 4.0

Published Online: 01-10-2019

Copyright Statement:  Copyright © 2019; Jaypee Brothers Medical Publishers (P) Ltd.


Abstract

Aim:Tocosh” is a potato that has undergone a process of hydraulic oxidation that enhances its antimicrobial properties so that this natural resource can be used in medical sciences. The aim of this study was to develop and evaluate the antibacterial and cytotoxic activity of a new experimental tooth based on Solanum tuberosumTocosh” on the cell lines 3T3 and DU145. Materials and methods: To evaluate the cytotoxicity, cell cultures 3T3 and DU145 were used. Cell viability was determined by the MTT assay (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) in a medium containing 10% calf serum where the cells were preincubated at a concentration of 1 × 106 cells/mL in culture medium for 3 hours at 37°C and 6.5% CO2. Then, the absorbance was measured using a microplate reader where the formazan crystals were diluted with acidic and cold isopropanol, and quantified in an ELISA reader. To evaluate the antibacterial effect, the Kirby Bauer inhibition halos method was used on strains of S. aureus (ATCC 25923), S. mutans (ATCC 25175), and S. mitis (ATCC 49456). Results: Solanum tuberosum (tocosh) was not cytotoxic because it only had one CC50 at the concentration of 0.26927 mg/mL and 0.26845 mg/mL for the cell lines 3T3 and DU145, respectively. Tocosh toothpaste (TD) has an antibacterial effect against S. aureus and S. mutans. Conclusion: The new ecological dentifrice was not cytotoxic since it did not alter cell viability because its CC50 was only 0.268 and 0.269 μg/mL for the 3T3 and DU145 cell lines, respectively; however, it presented an optimal antimicrobial activity against the oral strains evaluated. Clinical significance: This research has great potential for clinical use because this new dentifrice has antimicrobial activity against different oral germs.


PDF Share
  1. Someya N, Ohdaira Y, Tsuda S, et al. Molecular Characterization of the Bacterial Community in a Potato Phytosphere. Microbes Environ 2013;28(3):295–305. DOI: 10.1264/jsme2.ME13006.
  2. Isawa T, Yasuda M, Awazaki H, et al. Azospirillum sp. strain B510 enhances rice growth and yield. Microbes Environ 2010;25(1):58–61. DOI: 10.1264/jsme2.ME09174.
  3. Lin L, Li Z, Hu C, et al. Plant growth-promoting nitrogen-fixing enterobacteria are in association with sugarcane plants growing in Guangxi, China. Microbes Environ 2012;27(4):391–398. DOI: 10.1264/jsme2.ME11275.
  4. Okabe S, Nakamura Y, Satoh H. Community structure and in situ activity of nitrifying bacteria in phragmites root-associated biofilms. Microbes Environ 2012;27(3):242–249. DOI: 10.1264/jsme2.ME11314.
  5. Someya N, Ikeda S, Morohoshi T, et al. Diversity of culturable chitinolytic bacteria from rhizospheres of agronomic plants in Japan. Microbes Environ 2011;26(1):7–14. DOI: 10.1264/jsme2.ME10149.
  6. Andreote F, Nunes da Rocha U, Araujo W, et al. Effect of bacterial inoculation, plant genotype and developmental stage on root-associated and endophytic bacterial communities in potato (Solanum tuberosum). Antonie van Leeuwenhoek 2010;97(4):389–399. DOI: 10.1007/s10482-010-9421-9.
  7. Goss E, Tabima J, Cooke D, et al. The Irish potato famine pathogen Phytophthora infestans originated in central Mexico rather than the Andes. Proc Natl Acad Sci U S A 2014;111(24):8791–8796. DOI: 10.1073/pnas.1401884111.
  8. Goss E, Cardenas M, Myers K, et al. The plant pathogen Phytophthora andina emerged via hybridization of an unknown Phytophthora species and the Irish potato famine pathogen, P. infestans. PLoS One 2011;6(9):24543. DOI: 10.1371/journal.pone.0024543.
  9. Gómez-Alpizar L, Hu CH, Oliva R, et al. Phylogenetic relationships of Phytophthora andina, a new species from the highlands of Ecuador that is closely related to the Irish potato famine pathogen Phytophthora infestans. Mycologia 2008;100(4):590–602. DOI: 10.3852/07-074R1.
  10. Cárdenas M, Grajales A, Sierra R, et al. Genetic diversity of Phytophthora infestans in the Northern Andean region. BMC Genet 2011;12:23. DOI: 10.1186/1471-2156-12-23.
  11. Paredes C. Fundamentos Bioquímicos Fisiológicos y Clínicos. Lima: Consejo Nacional de Ciencia y Tecnología CONCYTEC. Nutrición; 1998.
  12. Feng J, Yuan F, Gao Y, et al. A novel antimicrobial protein isolated from potato (Solanum tuberosum) shares homology with an acid phosphatase. Biochem J 2003;376(2):481–487. DOI: 10.1042/bj20030806.
  13. Kim J, Gopal R, Kim S, et al. PG-2, a Potent AMP against Pathogenic Microbial Strains, from Potato (Solanum tuberosum L cv. Gogu Valley) Tubers Not Cytotoxic against Human Cells. Int J Mol Sci 2013;14(2):4349–4360. DOI: 10.3390/ijms14024349.
  14. Lechuga H, Salas H. Estudio para la instalación de una planta productora de mazamorra de tocosh con maca, quinua y leche. Ingeniería Industrial 2013;31:115–140. DOI: 10.26439/ing.ind2013.n031.15.
  15. National Research Council. Lost Crops of the Incas. Washington, DC: National Academy Press; 1989. p. 415.
  16. Flores H, Flores T. Biology and biochemistry of underground plant storage organs. Johns T, Romeo J. Functionality of Food Phytochemicals. New York: Plenum Press; 1997. pp. 113–132.
  17. Hawkes J. Biosystematics of the potato. Harris P. The Potato Crop. London: Chapman & Hall; 1992.
  18. Smirnoff N. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 1993;125:27–58. DOI: 10.1111/j.1469-8137.1993.tb03863.x.
  19. Fleet G. Microorganisms in food ecosystems. Int J Food Microbiol 1999;50(12):101–117. DOI: 10.1016/S0168-1605(99)00080-X.
  20. Bontempo P, Carafa V, Grassi R, et al. Antioxidant, antimicrobial and anti-proliferative activities of Solanum tuberosum L. var. Vitelotte. Food Chem Toxicol 2013;55:304–312. DOI: 10.1016/j.fct.2012.12.048.
  21. Ombra M, Fratianni F, Granese T, et al. In vitro antioxidant, antimicrobial and anti-proliferative activities of purple potato extracts (Solanum tuberosum cv Vitelotte noire) following simulated gastro-intestinal digestion. Nat Prod Res 2014;25:1–5.
  22. Lee Y, Bae J, Kim J, et al. Changes in the physiological activities of four sweet potato varieties by cooking condition. Korean J Nutr 2012;45(11):12–19. DOI: 10.4163/kjn.2012.45.1.12.
  23. Hasan I, Ozeki Y, Kabir S. Purification of a novel chitin-binding lectin with antimicrobial and antibiofilm activities from a bangladeshi cultivar of potato (Solanum tuberosum). Indian J Biochem Biophys 2014;51(2):142–148.
  24. Zarembinski TI, Hung LW, Mueller-Dieckmann HJ, et al. Structure-based assignment of the biochemical function of a hypothetical protein: a test case of structural genomics. Proc Natl Acad Sci U S A 1998;95(151):89–93. DOI: 10.1073/pnas.95.26.15189.
  25. Fleming A. On the antibacterial action of cultures of a Penicillium with special reference to their use in the isolation of B. influenzae. Br J Exp Path 1929;10:226–236.
  26. Munari C, de Oliveira P, de Souza Lima I, et al. Evaluation of cytotoxic, genotoxic and antigenotoxic potential of Solanum lycocarpum fruits glicoalkaloid extract in V79 cells. Food Chem Toxicol 2012;50(10):3696–3701. DOI: 10.1016/j.fct.2012.07.028.
  27. Jadge D, Patil S, Purohit R. Formulation of toothpaste from various Forms and extracts of tender twigs of Neem. J Pharm Res 2008;1(2):148–152.
  28. Medina D, Ulloa G, Camere R, et al. Antibacterial activity of Bixa orellana L. (achiote) against Streptococcus mutans and Streptococcus sanguinis. Asian Pac J Trop Biomed 2016;6(5):400–403. DOI: 10.1016/j.apjtb.2016.03.005.
  29. Camere R, Ulloa G, Medina D, et al. Antibacterial activity of Myrciaria dubia(Camu camu) against Streptococcus mutansand Streptococcus sanguinis. Asian Pac J Trop Biomed 2016;6(9):740–744. DOI: 10.1016/j.apjtb.2016.07.008.
  30. Mayta-Tovalino F, Gamboa E, Sanchez R, et al. Development and formulation of the experimental dentifrice base don Passiflora mollisima (Tumbo) with and without anion Fluor: Antibacterial activity on seven antimicrobial strains. Int J Dent 2019; 9056590. DOI: 10.1155/2019/9056590.
  31. Augustine D, Rao RS, Anbu J, et al. In vitro antiproliferative effect of earthworm coelomic fluid of Eudrilus eugeniae, Eisenia foetida, and Perionyx excavatus on squamous cell carcinoma-9 cell line: A pilot study. Phcog Res 2017;9(Suppl S1):61–66. DOI: 10.4103/pr. pr_52_17.
  32. Augustine D, Rao RS, Jayaraman A, et al. Anti-proliferative activity of earthworm coelomic fluid using oral squamous carcinoma KB 3-1 cells: An In vitro study with serine protease analysis. Phcog Mag 2018;14:528–534. DOI: 10.4103/pm.pm_412_18.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.