The Journal of Contemporary Dental Practice

Register      Login



Volume / Issue

Online First

Related articles

VOLUME 21 , ISSUE 6 ( June, 2020 ) > List of Articles


Orthodontic Inventory for Management of Nickel-sensitive Patients: An In Vitro Study

Sommya Kumari, Konark, Anju Singh, Pragyan Das

Keywords : Friction, Nickel sensitivity, Titanium brackets

Citation Information : Kumari S, Konark, Singh A, Das P. Orthodontic Inventory for Management of Nickel-sensitive Patients: An In Vitro Study. J Contemp Dent Pract 2020; 21 (6):645-650.

DOI: 10.5005/jp-journals-10024-2826

License: CC BY-NC 4.0

Published Online: 15-10-2020

Copyright Statement:  Copyright © 2020; The Author(s).


Aim: To compare the frictional resistance produced by titanium and stainless steel (SS) brackets with various orthodontic wires used in sliding mechanics. To evaluate surface texture of brackets and wires using scanning electron microscopy (SEM). Materials and methods: A total of 40 canine brackets of titanium and SS having 0.022” slot were tested for static and kinetic friction, with SS, low-friction titanium–molybdenum alloy (TMA), timolium and titanium–niobium (Ti–Nb) wires (0.019” × 0.025”), using a universal testing machine. To evaluate the surface roughness, the brackets and wires were subjected to SEM before and after testing. Results: Titanium brackets showed greater mean static and kinetic frictional forces compared to SS brackets with all the wires that were tested. It was lowest with timolium wire followed by SS wire, low-friction TMA and highest with Ti–Nb wire. The SEM indicated greater surface roughness of titanium bracket slot compared to the SS bracket slot, and titanium wires showed greater surface roughness compared to the SS wire. Conclusion: The SS bracket with SS wire would produce efficient results during retraction in sliding mechanics. However, in nickel-sensitive patients where titanium brackets are used as an alternative, the wire of choice would be timolium wire. Low-friction TMA and Ti–Nb wires would be the secondary wires of choice. Clinical significance: Nickel sensitivity and frictional resistance remain a matter of concern during orthodontic treatment for the patients and orthodontist, respectively. This study highlights the orthodontic wire of choice to reduce frictional resistance while using titanium brackets in nickel-sensitive patients.

  1. Burrow SJ. Friction and resistance to sliding in orthodontics: a critical review. Am J Orthod Dentofacial Orthop 2009;135(4):442–447. DOI: 10.1016/j.ajodo.2008.09.023.
  2. Kapur R, Sinha PK, Nanda RS. Comparison of frictional resistance in titanium and stainless steel brackets. Am J Orthod Dentofacial Orthop 1999;116(3):271–274. DOI: 10.1016/s0889-5406(99)70237-4.
  3. Kusy RP, O'grady PW. Evaluation of titanium brackets for orthodontic treatment: part II-the active configuration. Am J Orthod Dentofacial Orthop 2000;118(6):675–684. DOI: 10.1067/mod.2000.97818.
  4. Ortiz AJ, Fernández E, Vicente A, et al. Metallic ions released from stainless steel, nickel-free, and titanium orthodontic alloys: toxicity and DNA damage. Am J Orthod Dentofacial Orthop 2011;140(3):e115–e122. DOI: 10.1016/j.ajodo.2011.02.021.
  5. Oh KT, Kim KM. Iron release and cytotoxicity of stainless steel wires. Eur J Orthod 2005;27(6):533–540. DOI: 10.1093/ejo/cji047.
  6. Hwang CJ, Shin JS, Cha JY. Metal release from simulated fixed orthodontic appliances. Am J Orthod Dentofacial Orthop 2001;120(4):383–391. DOI: 10.1067/mod.2001.117911.
  7. Matos de Souza R, Nickel MML. Chromium and iron levels in saliva of patients with simulated fixed orthodontic appliances. Angle Orthod 2008;78(2):345–350. DOI: 10.2319/111806-466.1.
  8. Genelhu MCLS, Marigo M, Alves-Olivera LF, et al. Characterization of nickel-induced allergic contact stomatitis associated with fixed orthodontic appliances. Am J Orthod Dentofacial Orthop 2005;128(3):378–381. DOI: 10.1016/j.ajodo.2005.03.002.
  9. Park HY, Shearer TR. In vitro release of nickel and chromium from simulated orthodontic appliances. Am J Orthod 1983;84(2):156–159. DOI: 10.1016/0002-9416(83)90180-X.
  10. Sfondrini MF, Cacciafesta V, Maffia E, et al. Nickel release from new conventional stainless steel, recycled, and nickel-free orthodontic brackets: an in vitro study. Am J Orthod Dentofacial Orthop 2010;137(6):809–815. DOI: 10.1016/j.ajodo.2008.07.021.
  11. Gursoy UK, Sokucu O, Uitto VJ, et al. The role of nickel accumulation and epithelial cell proliferation in orthodontic treatment-induced gingival overgrowth. Eur J Orthod 2007;29(6):555–558. DOI: 10.1093/ejo/cjm074.
  12. Drescher D, Bourauel C, Schumacher HA. Frictional forces between bracket and arch wire. Am J Orthod Dentofacial Orthop 1989;96(5):397–404. DOI: 10.1016/0889-5406(89)90324-7.
  13. Sachdeva CL, Orthodontic bracket. United States Patent. Patent number 1993:5,232,361.
  14. Kusy RP, Whitley JQ, Ambrose WW, et al. Evaluation of titanium brackets for orthodontic treatment: Part I. The passive configuration. Am J Orthod Dentofacial Orthop 1998;114(5):558–572. DOI: 10.1016/s0889-5406(98)70176-3.
  15. Nanda R. Biomechanics in Clinical Orthodontics. W.B Saunders Company; 1997.
  16. Proffit WR, Fields HW, Sarver DM. Contemporary Orthodontics. 4th ed., St Louis: Mosby; 2007.
  17. Gioka C, Bourauel C, Zinelis S, et al. Titanium orthodontic brackets: structure, composition, hardness and ionic release. Dent Mater 2004;20(7):693–700. DOI: 10.1016/
  18. Doshi UH, Bhad-Patil WA. Static frictional force and surface roughness of various bracket and wire combinations. Am J Orthod Dentofacial Orthop 2011;139(1):74–79. DOI: 10.1016/j.ajodo.2009.02.031.
  19. Verstrynge A, Van Humbeeck J, Willems G. In-vitro evaluation of the material characteristics of stainless steel and beta-titanium orthodontic wires. Am J Orthod Dentofacial Orthop 2006;130(4):460–470. DOI: 10.1016/j.ajodo.2004.12.030.
  20. Brantley WA, Eliades T. Orthodontic Materials: Scientific and Clinical Aspects. New York: Thieme Stuttgart; 2001.
  21. Michelberger DJ, Eadie RL, Faulkner MG, et al. The friction and wear patterns of orthodontic brackets and archwires in the dry state. Am J Orthod Dentofacial Orthop 2000;118(6):662–674. DOI: 10.1067/mod.2000.105529.
  22. Kusy RP, Whitley JQ, de Araújo Gurgel J. Comparisons of surface roughnesses and sliding resistances of 6 titanium-based or TMA-type archwires. Am J Orthod Dentofacial Orthop 2004;126(5):589–603. DOI: 10.1016/j.ajodo.2003.09.034.
  23. Kusy RP, Whitley JQ, Mayhew MJ, et al. Surfaceroughness of orthodontic archwires via laser spectroscopy. Angle Orthod 1988; 58(1):33–45. DOI: 10.1043/0003-3219(1988)0582.0.CO;2.
  24. Tidy DC. Frictional forces in fixed appliances. Am J Orthod Dentofacial Orthop 1989;96(3):249–254. DOI: 10.1016/0889-5406(89)90462-9.
  25. Kusy RP, Whitley JQ. Effects of surface roughness on the coefficients of friction in model orthodontic systems. J Biomech 1990;23(9):913–925. DOI: 10.1016/0021-9290(90)90356-8.
  26. Prososki RR, Bagby MD, Erickson LC. Static frictional force and surface roughness of nickel-titanium arch wires. Am J Orthod Dentofacial Orthop 1991;100(4):341–348. DOI: 10.1016/0889-5406(91)70072-5.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.