The Journal of Contemporary Dental Practice

Register      Login

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue

Online First

Archive
Related articles

VOLUME 21 , ISSUE 8 ( August, 2020 ) > List of Articles

ORIGINAL RESEARCH

Comparative Evaluation of Stress Distribution around Various Threaded Implants with and without Platform Switch: A 3-D Finite Element Analysis

Gulshan K Tomar, Mirna Garhnayak, Abhijita Mahapatra, Sitansu S Das, Abhilash Mohapatra, Gopal K Choudhury

Citation Information : Tomar GK, Garhnayak M, Mahapatra A, Das SS, Mohapatra A, Choudhury GK. Comparative Evaluation of Stress Distribution around Various Threaded Implants with and without Platform Switch: A 3-D Finite Element Analysis. J Contemp Dent Pract 2020; 21 (8):891-896.

DOI: 10.5005/jp-journals-10024-2895

License: CC BY-NC 4.0

Published Online: 28-12-2020

Copyright Statement:  Copyright © 2020; The Author(s).


Abstract

Aim: The purpose of this study was to compare the stress distribution around various thread design implants with or without platform switching in the maxillary posterior region. Materials and methods: Stress-based performances of four different thread design implants (single, double, triple, and asymmetric thread design each with or without platform switching) were analyzed by the three-dimensional finite element method under a static load of 100 N at 15° oblique direction buccolingually at the central portion of the abutment. A geometric model of the posterior maxillary segment (first molar region) with an implant and abutment was modeled using the CATIA V5R19 software. Type IV bone quality was approximated and complete osseous integration was assumed. Results: The von Mises stresses recorded around the neck of the fourthread design implants without platform switching were greater than the platform switching variety. The single-threaded implant with platform switching showed the lowest amount of von Mises stress. Additionally, total displacement or micromovement of single, triple, and asymmetric thread implants with platform switching was found to be greater than the without platform switching variety. Further, the total displacement of the single-threaded implant without platform switching was lowest. Conclusion: Implant surface design, platform switching, and site of placement affect load transmission mechanisms. Due to low crestal resorption, single thread design with platform switching is preferred. The success of an implant in the maxillary molar region is more challenging in terms of the density of bone and the worst load transfer mechanism. With the right kind of implant surface design selection, this can be reduced to a great extent by the preservation of crest of the ridge. Clinical significance: Crestal bone resorption following implant placement is an important issue. An optimum implant design with a single thread having a platform switch could compensate for this issue to a great extent.


HTML PDF Share
  1. Adell R, Lekholm U, Rockler B, et al. A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. Int J Oral Surg 1981;10(6):387–416. DOI: 10.1016/S0300-9785(81)80077-4.
  2. Weibrich G, Buch RS, Wegener J, et al. Five-year prospective follow-up report of the Astra tech standard dental implant in clinical treatment. Int J Oral Maxillofacial Implants 2001;16(4):557–562.
  3. Goodacre CJ, Bernal G, Rungcharassaeng K, et al. Clinical complications with implants and implant prostheses. J Prosthet Dent 2003;90(2):121–132. DOI: 10.1016/S0022-3913(03)00212-9.
  4. Fugazzotto PA. Success and failure rates of osseointegrated implants in function in regenerated bone for 72 to 133 months. Int J Oral Maxillofac Implants 2005;20(1):77–83.
  5. Mich CE. Implant design considerations for the posterior regions of the mouth. Implant Dent 1999;8(4):376–386. DOI: 10.1097/00008505-199904000-00008.
  6. Weyant R. Short-term clinical success of root-form titanium implant systems. J Evid Based Dent Pract 2003;3(3):127–130. DOI: 10.1016/S1532-3382(03)00063-0.
  7. Roos-Jansåker AM, Lindahl C, Renvert H, et al. Nine- to fourteen-year follow-up of implant treatment. Part I: implant loss and associations to various factors. J Clin Periodontol 2006;33(4):283–289. DOI: 10.1111/j.1600-051X.2006.00907.x.
  8. Tonetti MS. Determination of the success and failure of root-form osseointegrated dental implants. Adv Dent Res 1999;13:173–180. DOI: 10.1177/08959374990130010801.
  9. Romeo E, Chiapasco M, Ghisolfi M, et al. Long-term clinical effectiveness of oral implants in the treatment of partial edentulism. Seven-year life table analysis of a prospective study with ITI dental implants system used for single-tooth restorations. Clin Oral Implants Res 2002;13(2):133–143. DOI: 10.1034/j.1600-0501.2002.130203.x.
  10. Ericsson I, Nilson H, Lindh T, et al. Immediate functional loading of Brånemark single tooth implants. An 18 months clinical pilot follow-up study. Clin Oral Implants Res 2000;11(1):26–33. DOI: 10.1034/j.1600-0501.2000.011001026.x.
  11. Piattelli A, Scarano A, Piattelli M, et al. Microscopical aspects of failure in osseointegrated dental implants: a report of five cases. Biomaterials 1996;17(1):235–241. DOI: 10.1016/0142-9612(96)84944-1.
  12. Jemt T, Chai J, Harnett J, et al. A 5-year prospective multicenter follow-up report on overdentures supported by osseointegrated implants. Int J Oral Maxillofac Implants 1996;11(3):291–298.
  13. Eckert SE, Wollan PC. Retrospective review of 1170 endosseous implants placed in partially edentulous jaws. J Prosthet Dent 1998;79(4):415–421. DOI: 10.1016/S0022-3913(98)70155-6.
  14. Lekholm U, Gunne J, Henry P, et al. Survival of the Brånemark implant in partially edentulous jaws: a 10-year prospective multicenter study. Int J Oral Maxillofac Implants 1999;14(5):639–645.
  15. Drago CJ. Rates of osseointegration of dental implants with regard to anatomical location. J Prosthodont 1992;1(1):29–31. DOI: 10.1111/j.1532-849X.1992.tb00423.x.
  16. Lindquist LW, Carlsson GE, Jemt T, et al. A prospective 15-year follow-up study of mandibular fixed prostheses supported by osseointegrated implants. Clinical results and marginal bone loss. Clin Oral Implants Res 1996;7(4):329–336. DOI: 10.1034/j.1600-0501.1996.070405.x.
  17. Lindquist LW, Rockler B, Carlsson GE, et al. Bone resorption around fixtures in edentulous patients treated with mandibular fixed tissue-integrated prostheses. J Prosthet Dent 1988;59:59–63. DOI: 10.1016/0022-3913(88)90109-6.
  18. Schou S, Holmstrup P, Hansen EH, et al. Plaque-induced marginal tissue reactions of osseointegrated oral implants: a review of the literature. Clin Oral Implants Res 1992;3(4):149–161. DOI: 10.1034/j.1600-0501.1992.030401.x.
  19. Block MS, Gardiner D, Kent JN, et al. Hydroxyapatite-coated cylindrical implants in the posterior mandible: 10-year observations. Int J Oral Maxillofac Implants 1996;11(5):626–633.
  20. van Steenberghe D, Lekholm U, Bolender C, et al. Applicability of osseointegrated oral implants in the rehabilitation of partial edentulism: a prospective multicenter study on 558 fixtures. Int J Oral Maxillofac Implants 1990;5(3):272–281.
  21. Quirynen M, Naert I, van Steenberghe D, et al. Fixture design and overload influence marginal bone loss and fixture success in the Brånemark system. Clin Oral Implants Res 1992;3(3):104–111. DOI: 10.1034/j.1600-0501.1992.030302.x.
  22. Isidor F. Loss of osseointegration caused by occlusal load of oral implants. A clinical and radiographic study in monkeys. Clin Oral Implants Res 1996;7(2):143–152. DOI: 10.1034/j.1600-0501.1996.070208.x.
  23. Tada S, Stegaroiu R, Kitamura E, et al. Influence of implant design and bone quality on stress/strain distribution in bone around implants: a 3-dimensional finite element analysis. Int J Oral Maxillofac Implants 2003;18(3):357–368.
  24. Abuhussein H, Pagni G, Rebaudi A, et al. The effect of thread pattern implant osseointegration. Clin Oral Implants Res 2010;21(2):129–136. DOI: 10.1111/j.1600-0501.2009.01800.x.
  25. Ausiello P, Franciosa P, Martorelli M, et al. Effects of thread features in osseo-integrated titanium implants using a statistics-based finite element method. Dent Mater 2012;28(8):919–927. DOI: 10.1016/j.dental.2012.04.035.
  26. Sun Y, Kong L, Liu B, et al. Comparative study of single-thread, double-thread, and triple-thread dental implant: a three-dimensional finite element analysis. World J Modell Simul 2007;3(4):310–314.
  27. Sykaras N, Iacopino AM, Marker VA, et al. Implant materials, designs, and surface topographies: their effect on osseointegration. A literature review. Int J Oral Maxillofac Implants 2000;15(5):675–690.
  28. Meric G, Erkmen E, Kurt A, et al. Biomechanical evaluation of a fiber-reinforced composite prosthesis supported by implants with and without a microthread collar design. J Dent Sci 2010;5(4):201–208. DOI: 10.1016/j.jds.2010.11.010.
  29. Lee DW, Choi YS, Park KH, et al. Effect of microthread on the maintenance of marginal bone level: a 3-year prospective study. Clin Oral Implants Res 2007;18(4):465–470. DOI: 10.1111/j.1600-0501.2007.01302.x.
  30. Abrahamsson I, Berglundh T. Tissue characteristics at microthreaded implants: an experimental study in dogs. Clin Implant Dent Relat Res 2006;8(3):107–113. DOI: 10.1111/j.1708-8208.2006.00016.x.
  31. Ferraz CC, Anchieta RB, de Almeida EO, et al. Influence of microthreads and platform switching on stress distribution in bone using angled abutments. J Prosthodont Res 2012;56(4):256–263. DOI: 10.1016/j.jpor.2012.02.002.
  32. Holmgren EP, Seckinger RJ, Kilgren LM, et al. Evaluating parameters of osseointegrated dental implants using finite element analysis: a two-dimensional comparative study examining the effects of implant diameter, implant shape, and load direction. J Oral Implantol 1998;24(2):80–88. DOI: 10.1563/1548-1336(1998)024<0080:EPOODI>2.3.CO;2.
  33. Palmer RM, Smith BJ, Palmer PJ, et al. A prospective study of Astra single tooth implants. Clin Oral Implants Res 1997;8(3):173–179. DOI: 10.1034/j.1600-0501.1997.080303.x.
  34. Gardner DM. Platform switching as a means to achieving implant esthetics. NY State Dent J 2005;71(3):34–37.
  35. López-Marí L, Calvo-Guirado JL, Martín-Castellote B, et al. Implant platform switching concept: an updated review. Med Oral Patol Oral Cir Bucal 2009;14(9):e450–e454.
  36. Chang CL, Chen CS, Hsu ML, et al. Biomechanical effect of platform switching in implant dentistry: a three-dimensional finite element analysis. Int J Oral Maxillofac Implants 2010;25(2):295–304.
  37. Canullo L, Pace F, Coelho P, et al. The influence of platform switching on the biomechanical aspects of the implant abutment system. A three-dimensional finite element study. Med Oral Patol Oral Cir Bucal 2011;16(6):e852–e856. DOI: 10.4317/medoral.17243.
  38. Prasad DK, Shetty M, Bansal N, et al. Crestal bone preservation: a review of different approaches for successful implant therapy. Indian J Dent Res 2011;22(2):317–323. DOI: 10.4103/0970-9290.84311.
  39. Lekholm U, Zarb GA. Patient selection and preparation. In: Branemark PI, Zarb GA, Albrektsson T, ed. Tissue integrated prostheses: osseointegration in clinical dentistry. Chicago: Quintessence Publishing Company; 1985. pp. 199–209.
  40. Jaffin RA, Berman CL. The excessive loss of Branemark fixtures in type IV bone: a 5-year analysis. J Periodontol 1991;62(1):2–4. DOI: 10.1902/jop.1991.62.1.2.
  41. Kim SH, Kim SJ, Lee KW, et al. The effects of local factors on the survival of dental implants: a 19-year retrospective study. J Korean Acad Prosthodont 2010;48(1):28–40. DOI: 10.4047/jkap.2010.48.1.28.
  42. Sato Y, Wadamoto M, Tsuga K, et al. The effectiveness of element downsizing on a three-dimensional finite element model of bone trabeculae in implant biomechanics. J Oral Rehabil 1999;26(4):288–291. DOI: 10.1046/j.1365-2842.1999.00390.x.
  43. Ichikawa T, Kanitani H, Wigianto R, et al. Influence of bone quality on the stress distribution. An in vitro experiment. Clin Oral Implants Res 1997;8(1):8–22. DOI: 10.1111/j.1600-0501.1997.tb00003.x.
  44. Siegele D, Soltesz U. Numerical investigations of the influence of implant shape on stress distribution in the jaw bone. Int J Oral Maxillofac Implants 1989;4(4):333–340.
  45. Misch CE. Density of bone: effect on treatment plans, surgical approach, healing, and progressive bone loading. Int J Oral Implantol 1990;6(2):23–31.
  46. Sahin S, Cehreli MC, Yalçin E, et al. The influence of functional forces on the biomechanics of implant-supported prostheses: a review. J Dent 2002;30(7-8):271–282. DOI: 10.1016/S0300-5712(02)00065-9.
  47. Papavasiliou G, Kamposiora P, Bayne SC, et al. Three-dimensional finite element analysis of stress distribution around single tooth implants as a function of bony support, prosthesis type, and loading during function. J Prosthet Dent 1996;76(6):633–664. DOI: 10.1016/S0022-3913(96)90442-4.
  48. Natali AN, Pavan PG. Numerical approach to dental biomechanics. In: Natali AN, ed. Dental biomechanics. London: Taylor and Francis; 2003. pp. 211–239.
  49. Natali AN, Pavan PG. A comparative analysis based on different strength criteria for evaluation of risk factor for dental implants. Comput Methods Biomech Biomed Engin 2002;5(2):127–133. DOI: 10.1080/10255840290032144.
  50. Geng IP, Tan KB, Liu GR, et al. Application of finite element analysis in implant dentistry: a review of the literature. J Prosthet Dent 2001;85(6):585–598. DOI: 10.1067/mpr.2001.115251.
  51. Van Staden RC, Guan H, Loo YC, et al. Application of the finite element method in dental implant research. Comput Methods Biomech Biomed Engin 2006;9(4):257–270. DOI: 10.1080/10255840600837074.
  52. Assaf JH, Filho AM, Zanatta FB, et al. Short implants with single-unit restorations in posterior regions with reduced height: a retrospective study. Braz J Oral Sci 2010;9(4):493–497.
  53. Pierrisnard L, Hure G, Barquins M, et al. Two dental implants designed for immediate loading: a finite element analysis. Int J Oral Maxillofac Implants 2002;17(3):353–362.
  54. Koka P, Mohapatra A, Anandapandian PA, et al. The effect of implant design on the stress distribution in a three-unit implant-supported distal cantilever fixed partial denture: a three-dimensional finite-element analysis. Indian J Dent Res 2012;23(2):129–134. DOI: 10.4103/0970-9290.100413.
  55. Desai SR, Singh R, Karthikeyan I, et al. Three-dimensional finite element analysis of effect of prosthetic materials and short implant biomechanics on D4 bone under immediate loading. J Dent Implants 2012;2(1):2–8. DOI: 10.4103/0974-6781.96556.
  56. Li T, Kong L, Wang Y, et al. Selection of optimal dental implant diameter and length in type IV bone: a three-dimensional finite element analysis. Int J Oral Maxillofac Surg 2009;38(10):1077–1083. DOI: 10.1016/j.ijom.2009.07.001.
  57. Kang YI, Lee DW, Park KH, et al. Effect of thread size on the implant neck area: preliminary results at 1 year of function. Clin Oral Implants Res 2012;23(10):1147–1151. DOI: 10.1111/j.1600-0501.2011.02298.x.
  58. Ryu HS, Namgung C, Lee JH, et al. The influence of thread geometry on implant osseointegration under immediate loading: a literature review. J Adv Prosthodont 2014;6(6):547–554. DOI: 10.4047/jap.2014.6.6.547.
  59. Herekar MG, Patil VN, Mulani SS, et al. The influence of thread geometry on biomechanical load transfer to bone: a finite element analysis comparing two implant thread designs. Dent Res J Isfahan 2014;11(4):489–494.
  60. Cruz M. Tri-Dimensional Stress Analysis Around a Cuneiform Implant by the Finite Element Method. Campinas, Brazil: M.D Sci. Thesis (Dentistry), Camilo Castelo Branco University; 2001. p. 134.
  61. Cruz M, Wassal T, Toledo EM, et al. Int J Oral Maxillofac Implants 2003;18(5):675–684.
  62. Desai SR, Singh R, Karthikeyan I. 2D FEA of evaluation of micro movements and stresses at bone-implant interface in immediately loaded tapered implants in the posterior maxilla. J Indian Soc Periodontol 2013;17(5):637–643. DOI: 10.4103/0972-124X.119283.
  63. Papavasiliou G, Kamposiora P, Bayne SC, et al. 3D-FEA of osseointegration percentages and patterns on implant-bone interfacial stresses. J Dent 1997;25(6):485–491. DOI: 10.1016/S0300-5712(96)00061-9.
  64. Shetty M, Prasad K, Sangeetha UN, et al. Platform switching: a new era in implant dentistry. Int J Oral Implant Clin Res 2010;1(2):61–65. DOI: 10.5005/jp-journals-10012-1010.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.