The Journal of Contemporary Dental Practice

Register      Login

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue

Online First

Archive
Related articles

VOLUME 22 , ISSUE 4 ( April, 2021 ) > List of Articles

ORIGINAL RESEARCH

Effects of Resin-modified Glass Ionomer Cement and Flowable Bulk-fill Base on the Fracture Resistance of Class II Restorations: An Original Laboratory Experimental Study

Hend N Al-Nahedh

Keywords : Base material, Bulk-fill, Class II, Composite resins, RMGIC

Citation Information :

DOI: 10.5005/jp-journals-10024-3068

License: CC BY-NC 4.0

Published Online: 00-04-2021

Copyright Statement:  Copyright © 2021; The Author(s).


Abstract

Aim and objective: The purpose of this study was to investigate the fracture resistance of marginal ridges restored using different techniques (amalgam, open sandwich technique, and incremental placement) and to compare these with smart dentin replacement (SDR) bulk-fill. Materials and methods: Amalgam, dispersalloy; a nanohybrid resin composite (Tetric N Ceram), a resin-modified glass ionomer cement (RMGIC) base (Fuji II LC), and flowable bulk-fill composites (SureFil SDR) were used. Standardized class II (occluso-distal) OD cavities were prepared on 60 (n = 12) extracted premolars, and five different protocols were used to restore the teeth: group 1, dispersalloy; group 2, dispersalloy with 4 mm Fuji II LC base; group 3, incrementally placed Tetric N Ceram; group 4, Tetric N Ceram with 4 mm Fuji II LC base; and group 5, Tetric N Ceram with SureFil SDR. The restorations were thermocycled then fractured using a universal testing machine, the maximum fracture load of the specimens was measured (N), and the type of fracture was recorded. Statistical analysis was carried out using one-way analysis of variance. Results: Amalgam groups showed the lowest fracture resistance, with no significant difference between the based and nonbased groups. The highest fracture resistance was displayed by Tetric N Ceram with SDR base, and it was significantly higher than all the groups except the Tetric N Ceram nonbased group. The RMGIC based Tetric N Ceram displayed intermediate fracture resistance. The majority of the restorations showed mixed types of fracture except for nonbased amalgam, which mostly failed cohesively through amalgam. SDR-based composite was the only group that showed severe tooth failures. Conclusions: The use of a 4 mm thick RMGIC base had no detrimental effect on the fracture resistance of class II amalgam and composite restorations. Clinical significance: Bulk-fill SureFil SDR placed under a conventional resin-based composite had similar fracture resistance to incrementally placed composite but higher than amalgam and composite restorations based on RMGIC.


HTML PDF Share
  1. Shimada Y, Tagami J. Effects of regional enamel and prism orientation on resin bonding. Oper Dent 2003;28(1):20–27. DOI: 10.2341/1559- 2863-28-1-1
  2. Opdam NJM, Roeters FJM, Feilzer AJ, et al. Marginal integrity and post-operative sensitivity in Class 2 resin composite restorations in vivo. J Dent 1998;26(7):555–562. DOI: 10.1016/s0300-5712(97)00042-0.
  3. Ferrari M, Cagidiaco MC, Davidson CL. Resistance of cementum in class II and V cavities to penetration by an adhesive system. Dent Mater 1997;13(3):157–162. DOI: 10.1016/S0109-5641(97)80117-0.
  4. Van Dijken JWV, Hörstedt P, Waern R. Directed polymerization shrinkage versus a horizontal incremental filling technique: interfacial adaptation in vivo in class II cavities. Am J Dent 1998;11(4): 165–172. PMID: 10388370.
  5. Braga RR, Ballester RY, Ferracane JL. Factors involved in the development of polymerization shrinkage stress in resin-composites: a systematic review. Dent Mater 2005;21(10):962–970. DOI: 10.1016/j. dental.2005.04.018.
  6. Tolidis K, Nobecourt A, Randall RC. Effect of a resin-modified glass ionomer liner on volumetric polymerization shrinkage of various composites. Dent Mater 1998;14(6):417–423. DOI: 10.1016/s0300- 5712(99)00016-0.
  7. Sidhu SK. Glass-ionomer cement restorative materials: a sticky subject? Aust Dent J 2011;56(Suppl. 1):23-30. DOI: 10.1111/j.1834- 7819.2010.01293.x.
  8. Karaman E, Ozgunaltay G. Polymerization shrinkage of different types of composite resins and microleakage with and without liner in class II cavities. Oper Dent 2014;39(3):325-331. DOI: 10.2341/11- 479-L.
  9. Giorgi MC, Hernandes NM, Sugii MM, et al. Influence of an intermediary base on the microleakage of simulated class II composite resin restorations. Oper Dent 2014;39(3):301-307. DOI: 10.2341/12-210-L.
  10. Koubi S, Raskin A, Dejou J, et al. Effect of dual cure composite as dentin substitute on the marginal integrity of Class II opensandwich restorations. Oper Dent 2010;35(2):165-171. DOI: 10.2341/08-29.
  11. Demarco FF, Correa MB, Cenci MS, et al. Longevity of posterior composite restorations: not only a matter of materials. Dent Mater 2012;28(1):87-101. DOI: 10.1016/j.dental.2011.09.003.
  12. Goraccia C, Cadenaro M, Fontanive L, et al. Polymerization efficiency and flexural strength of low-stress restorative composites. Dent Mater 2014;30(6):688-694. DOI: 10.1016/j.dental.2014.03.006.
  13. Burgess J, Cakir D. Comparative properties of low-shrinkage composite resins. Compend Contin Educ Dent 2010;31 Spec No 2:10-15. PMID: 20521569.
  14. Sarrett DC. Clinical challenges and the relevance of materials testing for posterior composite restorations. Dent Mater 2005;21(1):9-20. DOI: 10.1016/j.dental.2004.10.001.
  15. Ferracane JL. Resin composite.state of the art. Dent Mater 2011;27(1):29-38. DOI: 10.1016/j.dental.2010.10.020.
  16. Kopperud SE, Tveit AB, Gaarden T, et al. Longevity of posterio dental restorations and reasons for failure. Eur J Oral Sci 2012;120(6):539-548. DOI: 10.1111/eos.12004.
  17. Farah JW, Clark AE, Mohsein M, et al. Effect of cement base thicknesses on MOD amalgam restorations. J Dent Res 1983;62(2):109-111. DOI: 10.1177/00220345830620020301.
  18. Hormati AA, Fuller JL. The fracture strength of amalgam overlying base materials. J Prosthet Dent 1980;43(1):52-57. DOI: 10.1016/0022- 3913(80)90354-6.
  19. Palmer AE, Davis RD, Murchison DF, et al. Fracture strength of Class 2 amalgams with various cavity-lining materials. Oper Dent 1999;24(1):45-50. PMID: 10337298. DOI: 10.2341/1559-2863- 24-1-1.
  20. Guray Efes B, Yaman BC, Gumu.ta. B, et al. The effects of glass ionomer and flowable composite liners on the fracture resistance of opensandwich class II restorations. Dent Mater J 2013;32(6):877-882. DOI: 10.4012/dmj.2013-053.
  21. Castaneda-Espinosa JC, Pereira RA, Cavalcanti AP, et al. Transmission of composite polymerization contraction force through a flowable composite and a resin-modified glass ionomer cement. J Appl Oral Sci 2007:15(6):495-500. DOI: 10.1590/s1678-77572007000600008.
  22. van de Sande FH, Rodolpho PA, Basso GR, et al. 18-year survival of posterior composite resin restorations with and without glass ionomer cement as base. Dent Mater 2015;31(6):669-675. DOI: 10.1016/j.dental.2015.03.006.
  23. Opdam NJ, van de Sande FH, Bronkhorst E, et al. Longevity of posterior composite restorations: a systematic review and meta-analysis. J Dent Res 2014;93(10):943-949. DOI: 10.1177/0022034514544217.
  24. van Dijken JW. Durability of resin composite restorations in high C-factor cavities: a 12-year follow-up. J Dent 2010;38(6):469-474. DOI: 10.1016/j.jdent.2010.02.007.
  25. Yu P, Yap A, Wang XY. Degree of conversion and polymerization shrinkage of bulk-f ill resin-based composites. Oper Dent 2017;42(1):82-89. DOI: 10.2341/16-027-L.
  26. Almeida LJDS Junior, Penha KJS, Souza AF, et al. Is there correlation between polymerization shrinkage, gap formation, and void in bulk fill composites? A ƒÊCT study. Braz Oral Res 2017;31:e100. DOI: 10.1590/1807-3107bor-2017.vol31.0100.
  27. Rizzante FAP, Duque JA, Duarte MAH, et al. Polymerization shrinkage, microhardness and depth of cure of bulk fill resin composites. Dent Mater J 2019;38(3):403-410. DOI: 10.4012/dmj.2018-063.
  28. Tauböck TT, Jäger F, Attin T. Polymerization shrinkage and shrinkage force kinetics of high- and low-viscosity dimethacrylate- and ormocerbased bulk-fill resin composites. Odontology 2019;107(1):103-110. DOI: 10.1007/s10266-018-0369-y.
  29. Al-Nahedh HN, Alawami Z. Fracture resistance and marginal adaptation of capped and uncapped bulk-fill resin-based materials. Oper Dent 2020;45(2):E43-E56. DOI: 10.2341/17-367-L.
  30. Isufi A, Plotino G, Grande NM, et al. Fracture resistance of endodontically treated teeth restored with a bulkfill flowable material and a resin composite. Ann Stomatol 2016;VII(1-2):4-10. DOI: 10.11138/ads/2016.7.1.004.
  31. Chesterman J, Jowett A, Gallacher A, et al. Bulk-fill resin-based composite restorative materials: a review. Br Dent J 2017;222(5):337-344. DOI: 10.1038/sj.bdj.2017.214.
  32. Leprince JG, Palin WM, Vanacker J, et al. Physico-mechanical characteristics of commercially available bulk-fill composites. J Dent 2014;42(8):993-1000. DOI: 10.1016/j.jdent.2014.05.009.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.