The Journal of Contemporary Dental Practice

Register      Login

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue

Online First

Archive
Related articles

VOLUME 22 , ISSUE 9 ( September, 2021 ) > List of Articles

ORIGINAL RESEARCH

Fracture Resistance of Three-unit Fixed Dental Prostheses Fabricated with Milled and 3D Printed Composite-based Materials

Karim Corbani, Louis Hardan, Rita Eid, Hasan Skienhe, Nawal Alharbi, Mutlu Özcan

Keywords : CAD/CAM, Fiber reinforced composite, Fixed dental prosthesis, Fracture resistance, High-density polymers, 3D printing

Citation Information : Corbani K, Hardan L, Eid R, Skienhe H, Alharbi N, Özcan M. Fracture Resistance of Three-unit Fixed Dental Prostheses Fabricated with Milled and 3D Printed Composite-based Materials. J Contemp Dent Pract 2021; 22 (9):985-990.

DOI: 10.5005/jp-journals-10024-3137

License: CC BY-NC 4.0

Published Online: 06-01-2021

Copyright Statement:  Copyright © 2021; The Author(s).


Abstract

Aim: To evaluate the fracture resistance of three-unit fixed dental prosthesis (FDP) made of composite, high-density polymers (HDP), fiber-reinforced composite (FRC), and metal-ceramic (MC) using different fabrication methods. Materials and methods: A typodont model was prepared to receive a three-unit FDP replacing a missing second maxillary premolar. The prepared model was digitally scanned using an intraoral scanner (Trios3, 3Shape, Denmark). In total, 60 FDPs were fabricated and divided into four groups (n = 15) according to the materials and fabrication method: the subtractive method was used for the FRC (Trilor, Bioloren, Italy) and the HDP (Ambarino, Creamed, Germany) groups; the HDP group was monolithic, whereas the FRC group was layered with a nanocomposite (G-aenial Sculpt, GC). The additive method was used for the 3D printed (3DP) nanocomposite (Irix Max, DWS, Italy) and the Cr-Co (Starbond CoS powder 30) infrastructure of the MC groups. The FDPs were adhesively seated on stereolithography (SLA) fabricated dies. All samples were subjected to thermomechanical loading and fracture testing. The data for maximum load (N) to fracture was statistically analyzed with one-way analysis of variance (ANOVA) followed by Games-Howell post hoc test (α = 0.05). Results: The MC group reported the highest fracture resistance with a statistically significant difference (2390.87 ± 166.28 N) compared to other groups. No significance was noted between 3DP and HDP groups (1360.20 ± 148.15 N and 1312.27 ± 64.40 N, respectively), while the FRC group displayed the lowest value (839.07 ± 54.30 N). The higher frequency of nonrepairable failures was observed in the MC and FRC groups, while HDP and 3DP groups reported a high frequency of repairable failures. Conclusion: Significant differences were found in fracture resistance between the tested groups. The load-bearing capacity of the composite-based FPDs exceeded the range of maximum chewing forces. Clinical significance: 3D printed and milled composite-based materials might offer a suitable solution for the fabrication of FPDs.


HTML PDF Share
  1. Yoshida T, Kurosaki Y, Mine A, et al. Fifteen-year survival of resin-bonded vs full-coverage fixed dental prostheses. J Prosthodont Res 2019;63(3):374–382. DOI: 10.1016/j.jpor.2019.02.004.
  2. Zimmermann M, Ender A, Egli G, et al. Fracture load of CAD/CAM-fabricated and 3D-printed composite crowns as a function of material thickness. Clin Oral Investig 2019;23(6):2777–2784. DOI: 10.1007/s00784-018-2717-2.
  3. Poggio CE, Ercoli C, Rispoli L, et al. Metal-free materials for fixed prosthodontic restorations. Cochrane Database Syst Rev 2017;12(12):CD009606. DOI: 10.1002/14651858.CD009606.pub2.
  4. Conrad HJ, Seong WJ, Pesun IJ. Current ceramic materials and systems with clinical recommendations: a systematic review. J Prosthet Dent 2007;98(5):389–404. DOI: 10.1016/S0022-3913(07)60124-3.
  5. Harder S, Kern M. Survival and complications of computer aided-designing and computer-aided manufacturing vs. conventionally fabricated implant-supported reconstructions: a systematic review. Clin Oral Implants Res 2009;20(Suppl 4):48–54. DOI: 10.1111/j.1600-0501.2009.01778.x.
  6. Olsson KG, Fürst B, Andersson B, Carlsson GE. A long-term retrospective and clinical follow-up study of In-Ceram Alumina FPDs. Int J Prosthodont. 2003 Mar-Apr;16(2):150–156. PMID: 12737246.
  7. Zimmer D, Gerds T, Strub JR. Survival rate of IPS-Empress 2 all-ceramic crowns and bridges: three year's results. Schweiz Monatsschr Zahnmed 2004;114(2):115–119.
  8. Beuer F, Steff B, Naumann M, et al. Load-bearing capacity of all-ceramic three-unit fixed partial dentures with different computer-aided design (CAD)/computer-aided manufacturing (CAM) fabricated framework materials. Eur J Oral Sci 2008;116(4):381–386. DOI: 10.1111/j.1600-0722.2008.00551.x.
  9. Brunton PA, Cattell P, Burke FJ, et al. Fracture resistance of teeth restored with onlays of three contemporary tooth-colored resin-bonded restorative materials. J Prosthet Dent 1999;82(2):167–171. DOI: 10.1016/S0022-3913(99)70151-4.
  10. Zahran M, El-Mowafy O, Tam L, et al. Fracture strength and fatigue resistance of all-ceramic molar crowns manufactured with CAD/CAM technology. J Prosthodont 2008;17(5):370–377. DOI: 10.1111/j.1532-849X.2008.00305.x.
  11. Ruse ND, Sadoun MJ. Resin-composite blocks for dental CAD/CAM applications. J Dent Res 2014;93(12):1232–1234. DOI: 10.1177/0022034514553976.
  12. Coldea A, Swain MV, Thiel N. In-vitro strength degradation of dental ceramics and novel PICN material by sharp indentation. J Mech Behav Biomed Mater 2013;26:34–42. DOI: 10.1016/j.jmbbm.2013.05.004.
  13. Lebon N, Tapie L, Vennat E, et al. Influence of CAD/CAM tool and material on tool wear and roughness of dental prostheses after milling. J Prosthet Dent 2015;114(2):236–247. DOI: 10.1016/j.prosdent.2014.12.021.
  14. Awada A, Nathanson D. Mechanical properties of resin-ceramic CAD/CAM restorative materials. J Prosthet Dent 2015;114(4):587–593. DOI: 10.1016/j.prosdent.2015.04.016.
  15. Coldea A, Fischer J, Swain MV, et al. Damage tolerance of indirect restorative materials (including PICN) after simulated bur adjustments. Dent Mater 2015;31(6):684–694. DOI: 10.1016/j.dental.2015.03.007.
  16. Tsitrou EA, Northeast SE, van Noort R. Brittleness index of machinable dental materials and its relation to the marginal chipping factor. J Dent 2007;35(12):897–902. DOI: 10.1016/j.jdent.2007.07.002.
  17. Zaghloul H, Elkassas DW, Haridy MF. Effect of incorporation of silane in the bonding agent on the repair potential of machinable esthetic blocks. Eur J Dent 2014;8(1):44–52. DOI: 10.4103/1305-7456.126240.
  18. Naffah N, Ounsi H, Ozcan M, et al. Evaluation of the adaptation and fracture resistance of three CAD-CAM resin ceramics: an in vitro study. J Contemp Dent Pract 2019;20(5):571–576.
  19. Goujat A, Abouelleil H, Colon P, et al. Mechanical properties and internal fit of 4 CAD-CAM block materials. J Prosthet Dent 2018;119(3):384–389. DOI: 10.1016/j.prosdent.2017.03.001.
  20. Furtado de Mendonca A, Shahmoradi M, Gouvêa CVD, et al. Microstructural and mechanical characterization of CAD/CAM materials for mnolithic dental rstorations. J Prosthodont 2019;28(2):e587–e594. DOI: 10.1111/jopr.12964.
  21. Ahmed KE, Li KY, Murray CA. Longevity of fiber-reinforced composite fixed partial dentures (FRC FPD)—systematic review. J Dent 2017;61:1–11. DOI: 10.1016/j.jdent.2016.08.007.
  22. Barazanchi A, Li KC, Al-Amleh B, et al. Additive technology: update on current materials and applications in dentistry. J Prosthodont 2017;26(2):156–163. DOI: 10.1111/jopr.12510.
  23. Bae EJ, Jeong ID, Kim WC, et al. A comparative study of additive and subtractive manufacturing for dental restorations. J Prosthet Dent 2017;118(2):187–193. DOI: 10.1016/j.prosdent.2016.11.004.
  24. Bosch G, Ender A, Mehl A. A 3-dimensional accuracy analysis of chairside CAD/CAM milling processes. J Prosthet Dent 2014;112(6):1425–1431. DOI: 10.1016/j.prosdent.2014.05.012.
  25. Corbani K, Hardan L, Skienhe H, et al. Effect of material thickness on the fracture resistance and failure pattern of 3D-printed composite crowns. Int J Comput Dent 2020;23(3):225–233.
  26. Zimmermann M, Ender A, Attin T, et al. Fracture load of three-unit full-contour fixed dental prostheses fabricated with subtractive and additive CAD/CAM technology. Clin Oral Investig 2020;24(2):1035–1042. DOI: 10.1007/s00784-019-03000-0.
  27. Guess PC, Schultheis S, Wolkewitz M, et al. Influence of preparation design and ceramic thicknesses on fracture resistance and failure modes of premolar partial coverage restorations. J Prosthet Dent 2013;110(4):264–273. DOI: 10.1016/S0022-3913(13)60374-1.
  28. Benic GI, Mühlemann S, Fehmer V, et al. Randomized controlled within-subject evaluation of digital and conventional workflows for the fabrication of lithium disilicate single crowns. Part I: digital versus conventional unilateral impressions. J Prosthet Dent 2016;116(5):777–782. DOI: 10.1016/j.prosdent.2016.05.007.
  29. Joda T, Zarone F, Ferrari M. The complete digital workflow in fixed prosthodontics: a systematic review. BMC Oral Health 2017;17(1):124. DOI: 10.1186/s12903-017-0415-0.
  30. Sailer I, Strasding M, Valente NA, et al. A systematic review of the survival and complication rates of zirconia-ceramic and metal-ceramic multiple-unit fixed dental prostheses. Clin Oral Implants Res 2018;29(Suppl 16):184–198. DOI: 10.1111/clr.13277.
  31. Wiegand A, Stucki L, Hoffmann R, et al. Repairability of CAD/CAM high-density PMMA- and composite-based polymers. Clin Oral Investig 2015;19(8):2007–2013. DOI: 10.1007/s00784-015-1411-x.
  32. Creugers NH, Käyser AF, van 't Hof MA. A meta-analysis of durability data on conventional fixed bridges. Community Dent Oral Epidemiol 1994;22(6):448–452. DOI: 10.1111/j.1600-0528.1994.tb00795.x.
  33. Scurria MS, Bader JD, Shugars DA. Meta-analysis of fixed partial denture survival: prostheses and abutments. J Prosthet Dent 1998;79(4):459–464. DOI: 10.1016/s0022-3913(98)70162-3.
  34. Walton TR. An up-to-15-year comparison of the survival and complication burden of three-unit tooth-supported fixed dental prostheses and implant-supported single crowns. Int J Oral Maxillofac Implants 2015;30(4):851–861. DOI: 10.11607/jomi.4220.
  35. Zimmermann M, Mehl A, Reich S. New CAD/CAM materials and blocks for chairside procedures. Int J Comput Dent 2013;16(2):173–181.
  36. Alharbi N, Osman R, Wismeijer D. Effects of build direction on the mechanical properties of 3D-printed complete coverage interim dental restorations. J Prosthet Dent 2016;115(6):760–767. DOI: 10.1016/j.prosdent.2015.12.002.
  37. Sulaiman TA. Materials in digital dentistry—a review. J Esthet Restor Dent 2020;32(2):171–181. DOI: 10.1111/jerd.12566.
  38. Tortopidis D, Lyons MF, Baxendale RH, et al. The variability of bite force measurement between sessions, in different positions within the dental arch. J Oral Rehabil 1998;25(9):681–686. DOI: 10.1046/j.1365-2842.1998.00293.x.
  39. Lyons MF, Cadden SW, Baxendale RH, et al. Twitch interpolation in the assessment of the maximum force-generating capacity of the jaw-closing muscles in man. Arch Oral Biol 1996;41(12):1161–1168. DOI: 10.1016/S0003-9969(96)00086-6.
  40. Kolbeck C, Rosentritt M, Behr M, et al. In vitro examination of the fracture strength of 3 different fiber-reinforced composite and 1 all-ceramic posterior inlay fixed partial denture systems. J Prosthodont 2002;11(4):248–253. DOI: 10.1053/jpro.2002.29050.
  41. Lohbauer U, Scherrer SS, Della Bona A, et al. ADM guidance—ceramics: all-ceramic multilayer interfaces in dentistry. Dent Mater 2017;33(6):585–598. DOI: 10.1016/j.dental.2017.03.005.
  42. Selcuk A, Atkinson A. Elastic properties of ceramic oxidesused in solid oxide fuel cells (SOFC). J Eur Ceram Soc 1997;17(12):1523–1532. https://doi.org/10.1016/S0955-2219(96)00247-6.
  43. Marchionatti AME, Wandscher VF, Aurélio IL, et al. File-splitting multilayer vs monolithic Y-TZP: fatigue flexural strength and loading stresses by finite element analysis. Dent Mater 2019;35(4):e63–e73. DOI: 10.1016/j.dental.2019.01.014.
  44. Taskonak B, Yan J, Mecholsky JJ Jr, et al. Fractographic analyses of zirconia-based fixed partial dentures. Dent Mater 2008;24(8):1077–1082. DOI: 10.1016/j.dental.2007.12.006.
  45. Kim DY, Jeon JH, Kim JH, et al. Reproducibility of different arrangement of resin copings by dental microstereolithography: evaluating the marginal discrepancy of resin copings. J Prosthet Dent 2017;117(2):260–265. DOI: 10.1016/j.prosdent.2016.07.007.
  46. Barazanchi A, Li KC, Al-Amleh B, et al. Adhesion of porcelain to three-dimensionally printed and soft milled cobalt chromium. J Prosthodont Res 2020;64(2):120–127. DOI: 10.1016/j.jpor.2019. 05.007.
  47. Li KC. Microstructure and phase stability of three dental cobalt chromium alloys used for porcelain-fused-to-metal restorations during thermal processing. PhD Thesis. Otago, New Zealand:University of Otago; 2015.
  48. Piovesan EM, Demarco FF, Piva E. Fiber-reinforced fixed partial dentures: a preliminary retrospective clinical study. J Appl Oral Sci 2006;14(2):100–104. DOI: 10.1590/s1678-77572006000200007.
  49. Cenci MS, Rodolpho PA, Pereira-Cenci T, et al. Fixed partial dentures in an up to 8-year follow-up. J Appl Oral Sci 2010;18(4):364–371. DOI: 10.1590/S1678-77572010000400008.
  50. Yucel MT, Yondem I, Aykent F, et al. Influence of the supporting die structures on the fracture strength of all-ceramic materials. Clin Oral Investig 2012;16(4):1105–1110. DOI: 10.1007/s00784-011-0606-z.
  51. Dittmer MP, Kohorst P, Borchers L, et al. Influence of the supporting structure on stress distribution in all-ceramic FPDs. Int J Prosthodont 2010;23(1):63–68.
  52. Bindl A, Lüthy H, Mörmann WH. Strength and fracture pattern of monolithic CAD/CAM-generated posterior crowns. Dent Mater 2006;22(1):29–36. DOI: 10.1016/j.dental.2005.02.007.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.