The Journal of Contemporary Dental Practice

Register      Login



Volume / Issue

Online First

Related articles

VOLUME 19 , ISSUE 11 ( November, 2018 ) > List of Articles


Effect of Silver Nanoparticles, Zinc Oxide Nanoparticles and Titanium Dioxide Nanoparticles on Microshear Bond Strength to Enamel and Dentin

Fatemeh Koohpeima, Zahra Jowkar, Nazbanoo Farpour, Mohammad J Mokhtari, Fereshteh Shafiei

Keywords : Adhesive bonding, Laboratory research, Microshear bond strength, Nanoparticles

Citation Information : Koohpeima F, Jowkar Z, Farpour N, Mokhtari MJ, Shafiei F. Effect of Silver Nanoparticles, Zinc Oxide Nanoparticles and Titanium Dioxide Nanoparticles on Microshear Bond Strength to Enamel and Dentin. J Contemp Dent Pract 2018; 19 (11):1405-1412.

DOI: 10.5005/jp-journals-10024-2440

License: CC BY-NC 4.0

Published Online: 01-06-2018

Copyright Statement:  Copyright © 2018; The Author(s).


Aim: This study was aimed to evaluate whether antibacterial pretreatment of enamel and dentin with silver nanoparticles (SNPs), zinc oxide nanoparticles (ZNPs) and titanium dioxide nanoparticles (TNPs) has any effect on the microshear bond strength of an etch-and-rinse adhesive system. Materials and methods: Eighty human third molars were randomly assigned to eight subgroups (n = 10). Enamel groups included no pretreatment (E), pretreatments with SNPs (ESNP), ZNPs (EZNP) and TNPs (ETNP) before acid etching and adhesive application. Dentinal groups included no pretreatment (D), pretreatments with SNPs (DSNP), ZNPs (DZNP) and TNPs (DTNP). The specimens were bonded by Adper Single Bond and polyvinyl chloride microtubes and were restored with Z250 composite. The bonded surfaces underwent microshear bond strength (ìSBS) test. Data in megapascal (MPa) were analyzed with the Kruskal–Wallis test and the Mann–Whitney test (p = 0.05). Results: There was not a significant difference among the groups in enamel (p > 0.05). There was no significant difference between the application of three nanoparticles and the control group in dentin. However, DSNPs had a higher ìSBS (25.60 ± 14.61) than that of the DZNPs and DTNPs groups (p = 0.03 and p = 0.001, respectively). Also, the mean ìSBS value was lower in dentin groups compared to the respective enamel groups (p < 0.05) except for groups DSNPs and ESNPs in which no significant difference was found (p > 0.05). Conclusion: Pretreatment with SNPs, TNPs, and ZNPs can be suggested to achieve potent antibacterial activities without compromising the bond strength. The best result was obtained for pretreatment with SNPs compared to pretreatment with TNPs or ZNPs in dentin and enamel, albeit the differences were not significant in the enamel groups. Clinical significance: Effective antibacterial treatment prior to adhesive bonding application is desirable to provide successful restoration if it would not adversely affect the bond strength of the adhesive system. Nanoparticles can be applied to meet this goal.

PDF Share
  1. Melo MA, Cheng L, Weir MD, Hsia RC, Rodrigues LK, Xu HH. Novel dental adhesive containing antibacterial agents and calcium phosphate nanoparticles. J Biomed Mater Res Part B, Applied biomaterials. 2013;101(4):620-629.
  2. Sakaguchi RL. Review of the current status and challenges for dental posterior restorative composites: clinical, chemistry, and physical behavior considerations. Summary of discussion from the Portland Composites Symposium (POCOS) June 17-19, 2004, Oregon Health and Science University, Portland, Oregon. Dent Mater. 2005;21(1):3-6.
  3. de Almeida Neves A, Coutinho E, Cardoso MV, Lambrechts P, Van Meerbeek B. Current concepts and techniques for caries excavation and adhesion to residual dentin. J Adhes Dent. 2011;13(1):7-22.
  4. Li F, Chen J, Chai Z, Zhang L, Xiao Y, Fang M, et al. Effects of a dental adhesive incorporating antibacterial monomer on the growth, adherence and membrane integrity of Streptococcus mutans. J Dent. 2009;37(4):289-296.
  5. Kasraei S, Sami L, Hendi S, Ali Khani M-Y, Rezaei-Soufi L, Khamverdi Z. Antibacterial properties of composite resins incorporating silver and zinc oxide nanoparticles on Streptococcus mutans and Lactobacillus. Restor Dent Endod. 2014;39(2):109-114.
  6. Xia Y, Zhang F, Xie H, Gu N. Nanoparticle-reinforced resinbased dental composites. J Dent. 2008;36(6):450-455.
  7. Cheng L, Weir MD, Xu HH, Antonucci JM, Lin NJ, Lin- Gibson S, et al. Effect of amorphous calcium phosphate and silver nanocomposites on dental plaque microcosm biofilms. J Biomed Mater Res Part B, Applied biomaterials. 2012;100(5):1378-1386.
  8. Miki S, Kitagawa H, Kitagawa R, Kiba W, Hayashi M, Imazato S. Antibacterial activity of resin composites containing surface pre-reacted glass-ionomer (S-PRG) filler. Dent Mater. 2016;32(9):1095-1102.
  9. Reddy AK, Kambalyal PB, Patil SR, Vankhre M, Khan MYA, Kumar TR. Comparative evaluation and influence on shear bond strength of incorporating silver, zinc oxide, and titanium dioxide nanoparticles in orthodontic adhesive. J Orthodont Sci. 2016;5(4):127.
  10. Mohamed Hamouda I. Current perspectives of nanoparticles in medical and dental biomaterials. J Biomed Res. 2012;26(3):143-151.
  11. Fatemeh K, Mohammad Javad M, Samaneh K. The effect of silver nanoparticles on composite shear bond strength to dentin with different adhesion protocols. J Appl Oral Sci. 2017;25:367-373.
  12. Li X, Cui R, Liu W, Sun L, Yu B, Fan Y, et al. The Use of Nanoscaled Fibers or Tubes to Improve Biocompatibility and Bioactivity of Biomedical Materials. J Nanomater. 2013;2013:16.
  13. Borzabadi-Farahani A, Borzabadi E, Lynch E. Nanoparticles in orthodontics, a review of antimicrobial and anti-caries applications. Acta Odontol Scand. 2014;72(6):413-417.
  14. Rai MK, Deshmukh SD, Ingle AP, Gade AK. Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. J Appl Microbiol. 2012;112(5):841-852.
  15. Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;27(1):76-83.
  16. Besinis A, De Peralta T, Handy RD. The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays. Nanotoxicology. 2014;8(1):1-16.
  17. Gomes-Filho JE, Silva FO, Watanabe S, Cintra LT, Tendoro KV, Dalto LG, et al. Tissue reaction to silver nanoparticles dispersion as an alternative irrigating solution. J Endod. 2010;36(10):1698-1702.
  18. Jones N, Ray B, Ranjit KT, Manna AC. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett. 2008;279(1):71-76.
  19. Hirota K, Sugimoto M, Kato M, Tsukagoshi K, Tanigawa T, Sugimoto H. Preparation of zinc oxide ceramics with a sustainable antibacterial activity under dark conditions. Ceram Int. 2010;36(2):497-506.
  20. Sharma V, Shukla RK, Saxena N, Parmar D, Das M, Dhawan A. DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. Toxicol Lett. 2009;185(3):211-218.
  21. Xie Y, He Y, Irwin PL, Jin T, Shi X. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl Environ Microbiol. 2011;77(7):2325- 2331.
  22. Heravi F, Ramezani M, Poosti M, Hosseini M, Shajiei A, Ahrari F. In Vitro Cytotoxicity Assessment of an Orthodontic Composite Containing Titanium-dioxide Nano-particles. J Dent Res, Dental Clinics, Dental Prospects. 2013;7(4):192-198.
  23. Mohamed Hamouda I. Current perspectives of nanoparticles in medical and dental biomaterials. J Biomed Res. 2012;26(3):143-151.
  24. Reddy AK, Kambalyal PB, Patil SR, Vankhre M, Khan MY, Kumar TR. Comparative evaluation and influence on shear bond strength of incorporating silver, zinc oxide, and titanium dioxide nanoparticles in orthodontic adhesive. J Orthod Sci. 2016;5(4):127-131.
  25. Sadat-Shojai M, Atai M, Nodehi A, Khanlar LN. Hydroxyapatite nanorods as novel fillers for improving the properties of dental adhesives: Synthesis and application. Dent Mater. 2010;26(5):471-482.
  26. Imazato S, Kuramoto A, Takahashi Y, Ebisu S, Peters MC. In vitro antibacterial effects of the dentin primer of Clearfil Protect Bond. Dent Mater. 2006;22(6):527-532.
  27. Duarte SJ, Lolato AL, de Freitas CRB, Dinelli W. SEM analysis of internal adaptation of adhesive restorations after contamination with saliva. J Adhes Dent. 2005;7(1):51-56.
  28. Loguercio AD, Reis A, Bortoli G, Patzlaft R, Kenshima S, Filho LER, et al. Influence of Adhesive Systems on Interfacial Dentin Gap Formation In Vitro. Oper Dent. 2006;31(4):431-41.
  29. Ercan E, Erdemir A, Zorba YO, Eldeniz AU, Dalli M, Ince B, et al. Effect of different cavity disinfectants on shear bond strength of composite resin to dentin. J Adhes Dent. 2009;11(5):343-346.
  30. Borges FMC, de Melo MAS, Lima JPM, Zanin ICJ, Rodrigues LKA. Antimicrobial effect of chlorhexidine digluconate in dentin: In vitro and in situ study. J Conserv Dent : JCD. 2012;15(1):22-26.
  31. Mona Riad AYH, Omnia A. Elhiny, Ghada A. Salem. Evaluation of the Shear Bond Strength of Orthodontic Adhesive System Containing Antimicrobial Silver Nano Particles on Bonding of Metal Brackets to Enamel. Life Sci J. 2015;12(12):27-34.
  32. Cheng L, Weir MD, Xu HHK, Antonucci JM, Kraigsley AM, Lin NJ, et al. Antibacterial amorphous calcium phosphate nanocomposites with a quaternary ammonium dimethacrylate and silver nanoparticles. Dent Mater. 2012;28(5):561-572.
  33. Hernández-Sierra JF, Ruiz F, Cruz Pena DC, Martínez-Gutiérrez F, Martínez AE, de Jesús Pozos Guillén A, et al. The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold. Nanomedicine. 2008;4(3):237-240.
  34. Li F, Weir MD, Chen J, Xu HH. Comparison of quaternary ammonium-containing with nano-silver-containing adhesive in antibacterial properties and cytotoxicity. Dent Mater. 2013;29(4):450-461.
  35. Gu H, Fan D, Gao J, Zou W, Peng Z, Zhao Z, et al. Effect of ZnCl2 on plaque growth and biofilm vitality. Arch Oral Biol. 2012;57(4):369-375.
  36. Raquel O, Monica Y, Estrella O, S. RJ, Manuel T. Zinc-doped dentin adhesive for collagen protection at the hybrid layer. Eur J Oral Sci. 2011;119(5):401-410.
  37. Osorio R, Yamauti M, Osorio E, Ruiz-Requena ME, Pashley DH, Tay FR, et al. Zinc reduces collagen degradation in demineralized human dentin explants. J Dent. 2011;39(2):148-153.
  38. Hoppe A, Guldal NS, Boccaccini AR. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials. 2011;32(11): 2757-2774.
  39. Takatsuka T, Tanaka K, Iijima Y. Inhibition of dentine demineralization by zinc oxide: In vitro and in situ studies. Dent Mater. 2005;21(12):1170-1177.
  40. Spencer CG, Campbell PM, Buschang PH, Cai J, Honeyman AL. Antimicrobial Effects of Zinc Oxide in an Orthodontic Bonding Agent. Angle Orthod. 2009;79(2):317-322.
  41. Shirai R, Miura T, Yoshida A, Yoshino F, Ito T, Yoshinari M, et al. Antimicrobial effect of titanium dioxide after ultraviolet irradiation against periodontal pathogen. Dent Mater J. 2016;35(3):511-516.
  42. Cao B, Wang Y, Li N, Liu B, Zhang Y. Preparation of an orthodontic bracket coated with an nitrogen-doped TiO2-xNy thin film and examination of its antimicrobial performance. Dent Mater J. 2013; 32(2):311-316.
  43. Sodagar A, Akhoundi MSA, Bahador A, Jalali YF, Behzadi Z, Elhaminejad F, et al. Effect of TiO2 nanoparticles incorporation on antibacterial properties and shear bond strength of dental composite used in Orthodontics. Dental Press J Orthod. 2017;22(5):67-74.
  44. Blöcher S, Frankenberger R, Hellak A, Schauseil M, Roggendorf MJ, Korbmacher-Steiner HM. Effect on enamel shear bond strength of adding microsilver and nanosilver particles to the primer of an orthodontic adhesive. BMC Oral Health. 2015;15:42.
  45. Mei ML, Ito L, Cao Y, Li QL, Chu CH, Lo EC. The inhibitory effects of silver diamine fluorides on cysteine cathepsins. J Dent. 2014;42(3):329-335.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.