The Journal of Contemporary Dental Practice

Register      Login



Volume / Issue

Online First

Related articles

VOLUME 20 , ISSUE 2 ( February, 2019 ) > List of Articles


Assessment of Antibacterial and Antifungal Properties and In Vivo Cytotoxicity of Peruvian Passiflora mollisima

Adrián Calderon, Julio Salas, Giannina Dapello, Eloy Gamboa, José Rosas, Juana Chávez, Fernando Retuerto, Frank Mayta-Tovalino

Keywords : Antibacterial activity, Antifungal activity, Cytotoxicity, Passiflora mollisima, Zone of inhibition

Citation Information : Calderon A, Salas J, Dapello G, Gamboa E, Rosas J, Chávez J, Retuerto F, Mayta-Tovalino F. Assessment of Antibacterial and Antifungal Properties and In Vivo Cytotoxicity of Peruvian Passiflora mollisima. J Contemp Dent Pract 2019; 20 (2):145-151.

DOI: 10.5005/jp-journals-10024-2489

License: CC BY-NC 4.0

Published Online: 01-12-2018

Copyright Statement:  Copyright © 2019; The Author(s).


Aim: The antimicrobial activity of Passiflora mollissima is largely due to its aliphatic and aromatic hydrocarbons, terpenes, alkaloids, ketones, esters, alcohols, and lactones. The objective of this research was to evaluate the antimicrobial activity of the compounds in the Passiflora mollissima (Tumbo) fruit and leaves included also on cultured strains of the microorganisms Streptococcus mutans, Streptococcus oralis, Streptococcus sanguinis and Candida albicans. Materials and methods: Antimicrobial activity was analyzed by the disk diffusion method and evaluated in terms of their zones of inhibition. The cytotoxic activity of these compounds was determined in a bioassay involving sea urchin eggs (Tetrapygusniger) in which the inhibition percentage of artificially fertilized ovules was equivalent to their cytotoxic activity after 26 hours. Results: This study demonstrated the antimicrobial activity of ethanolic Passiflora mollissima extract against the cultured strains of Streptococcus mutans, Streptococcus oralis, and Streptococcus sanguinis with zones of inhibition after the incubation period. Conclusion: There was no evidence of activity against the pathogenic Candida albicans, which demonstrates a null antifungal capacity of the evaluated extracts. However, cytotoxic activity was found, and the compounds led to the complete inhibition of 100% of sea urchin ovules after 26 hours of exposure. Clinical importance: The results of the study serve as a guide. in the industrial use of this natural resource “tumbo” due to the discovery of a potential medicine based on this plant that would be a great development in the field of antimicrobial therapies.

PDF Share
  1. Vila R, Santana A, Perez R, Valderrama A, Castelli M, Mendonca S, Zacchino S, Gupta M, y Canigueral S. Composition and biological activity of the essential oil from leaves of Plinia cerrocampanensis, a new source of α-bisabolol. Bioresour Technol 2010;101(7):2510-2514.
  2. Kannan S, Parimala B, Jayakar B. In Vitro antibacterial activity of various extracts on Leaves of Passiflora mollisima. J Chem Pharm Res 2010; 2(5):225-228.
  3. Latha R, Saravana O, Sagaya R, Venkatadri B, Agastian P. Antimicrobial Efficacy and α - Glucosidase Inhibition of Passiflora mollissima Bailey Leaves and IT'S Phytochemical Analisis. J Pharm Health Care Sci 2015;4(4):62-78.
  4. Ingale A, Hivrale A. Pharmacological studies of Passiflora sp. and their bioactive compounds. Afr J Plant Sci 2010;4(10): 417-426.
  5. Mohanasundari C, Natarajan D, Srinivasan K, Umamaheswari S, y Ramachandran A. Antibacterial Properties of Passiflora foetida L. – a common exotic medicinal plant. Afr J Biotechnol 2007; 6 (23):2650-2653.
  6. Razia M, Beulah S, Sivaramakrishnan S. Phytochemical, GC-MS, FT.IR Analysis and Antibacterial Activity of Passiflora Edulis of Kodaikanal Region of Tamilnadu. World J Pharm Sci 2014;3(9):435-441.
  7. Shiamala R, Japar B, Muta Z. Assessment of Total Phenolic, Antioxidant, and Antibacterial Activities of Passiflora Species. Scientific World Journal 2014;3(2):1-10.
  8. Ghribi L, Nejma A, Besbes M, Harzalla F, Flamini G, Jannet H. Chemical Composition, Cytotoxic and Antibacterial Activities of the Essential Oil from the Tunisian Ononisangustissima L (Fabaceae). J Oleo Sci 2016; 65(4): 339-345.
  9. Rios J, Recio M, Villar A. Screening methods for natural products with antimicrobial activity: A review of the literature. J Ethnopharmacol 1988; 23(2):127-249.
  10. Rosella Camere-Colarossi, Gabriela Ulloa-Urizar, Dyanne Medina-Flores, Stefany Caballero-Garcia, Frank Mayta-Tovalino, Juana del Valle-Mendoza. Antibacterial activity of Myrciaria dubia (Camu camu) against Streptococcus mutans and Streptococcus sanguinis. Asian Pac J Trop Biomed 2016;6(9): 740-744.
  11. Bhalodia N, Shukla V. Antibacterial and antifungal activities from leaf extracts of Cassia fistula l.: An ethnomedicinal plant. J Adv Pharm Technol Res 2011;2(2):104-109.
  12. Nascimento G, Locatelli J, Freitas P, Silva G. Antibacterial activity of plant extracts and phytochemicals on antibiotic-resistant bacteria. Braz J Microbiol 2000;31(4):247-256.
  13. Santos F, Bastos E, Uzeda M, Carvalho M, Farias L, Moreira E. Antibacterial activity of Brazilian propolis and fractions against oral anaerobic bacteria. J Ethnopharmacol 2002; 80(1):1-7.
  14. Chovanová R, Mikulášová M, Vaverková Š. In Vitro Antibacterial and Antibiotic Resistance Modifying Effect of Bioactive Plant Extracts on Methicillin-Resistant Staphylococcus epidermidis. Int J Microbiol 2013; 2(1):1-7.
  15. Chaves T, Clementino E, Felismino D, Alves R, Vasconcellos A, Coutinho H et al. Antibiotic resistance modulation by natural products obtained from Nasutitermescorniger (Motschulsky, 1855) and its nest. Saudi J Biol Sci 2015; 22(4):404-840.
  16. Vadhana P, Singh B, Bharadwaj M. Emergence of Herbal Antimicrobial Drug Resistance in Clinical Bacterial Isolates. Pharma Anal Acta. 2015; 6(10):434
  17. Patil A, Paikrao H, Patil S. Passiflora Foetida Linn: A Complete Morphological and Phytopharmacological Review. Int J Pharm Bio Sci 2013; 4(1):285-296.
  18. Farhana A, Mahmuda H, Laizuman N. Antibacterial, Cytotoxic and Antioxidant Activity of Passiflora Edulis Sims. Eur J Sci Res 2009; 31(4):592-598.
  19. Shiamala R, Japar B, Muta Z. Assessment of Total Phenolic, Antioxidant, and Antibacterial Activities of Passiflora Species. Scientific World Journal 2014;3(2):1-10.
  20. Birner J, Nicolls J. Passicol, an Antibacterial and Antifungal Agent Produced by Passiflora Plant Species: Preparation and Physicochemical Characteristics. Antimicrob Agents Chemother 1973; 3(1):105-109.
  21. Dyanne Medina-Flores, Gabriela Ulloa-Urizar, Rosella Camere- Colarossi, Stefany Caballero-García, Frank Mayta-Tovalino, Juana del Valle-Mendoza. Antibacterial activity of Bixa orellana L. (achiote) against Streptococcus mutans and Streptococcus sanguinis. Asian Pac J Trop Biomed 2016; 6(5):400-403.
  22. Denapaite D, Rieger M, Köndgen S, Brückner R, Ochigava I, Kappeler P, Mätz-Rensing K, Leendertz F, Hakenbeck R. Highly Variable Streptococcus oralis Strains Are Common among Viridans Streptococci Isolated from Primates. mSphere, 2016;1(2): e00041-15.
  23. Cheon K, Moser S, Wiener H, Whiddon J, Momenil S, Ruby J, Cutter G, Childers N. Characteristics of Streptococcus mutans genotypes and dental caries in children, Eur J Oral Sci 2013;121(301):148-155.
  24. Napimoga N, Höfling J, Klein M, Kamiya R, Gonçalves R. Tansmission, diversity and virulence factors of Sreptococcus mutans genotypes. J Oral Sci 2005;47(2):59-64.
  25. Camara L, Fernandes V, Meyre S, Guilherme da Cunha M, Tasca A, Ernesto de Carvalho J, Sartoratto A, Garcia V, Mara G, Teixeira M, Ikegaki M, Matias de Alencar M, Rosalen P. Antimicrobial Activity of Essential Oils against Streptococcus mutans and their Antiproliferative Effects. J Evide Based Complementary Altern Med 2012;751435.
  26. Corcuera M, Gómez F, Gómez M, Ramos C, Parte M, Alonso M, Prieto J. Qualitative and quantitative agar invasion test based on bacterial colony/biofilm. J Microbiol Methods 2013; 94(3):267-273.
  27. Azizi A, Amirzadeh Z, Rezai M, Lawaf S, Rahimi A. Effect of photodynamic therapy with two photosensitizers on Candida albicans. J Photochem Photobiol B 2016; 15(8):267-273.
  28. Hose J. Potential uses of sea urchin embryos for identifying toxic chemicals: Description of a bioassay incorporating cytologic, cytogenetic andembryologic endpoints. J Appl Toxicol 1985, 5(4):245-254.
  29. Fernandes C, Freitas J, Salatino A, Salatino M. Cytotoxic Activity of Six Samples of Brazilian Propolis on Sea Urchin (Lytechinusvariegatus) Eggs. J Evide Based Integr Med 2013:1-4.
  30. Figuerola B, Toboada S, Monleón T, Vázquez J, Ávila C. Cytotoxic Activity of Antarctic Benthic Organisms Against the Common Sea Urchin Sterechinusneumayeri. Oceanography 2013, 1(2):1-9.
  31. W. Lin, H. Zhang, G. Beck,”Phylogeny of natural cytotoxicity: Cytotoxic activity of coelomocytes of the purple sea urchin, Arbaciapunctulata,” J Exp Zool 2001;290(7);741-750.
  32. García-Ruiz A, Girones-Vilaplana A, León P, Moreno D, Stinco C, Meléndez-Martínez A, Ruales J. Banana Passion Fruit (Passiflora mollissima (Kunth) L.H. Bailey): Microencapsulation, Phytochemical Composition and Antioxidant Capacity,” Molecules 2017. 22(85):1-12.
  33. Costa L, Ferreira M, Lemos T, Pessoa O, Viana G, Cunha G. Toxicity to sea urchin egg development of the quinone fraction obtained from Auxemma oncocalyx. Braz J Med Biol Res 2002; 35(8): 927-930.
  34. Gui C, Yuan J, Mo X, Huang H, Zhang S, Gu YC, Ju J. Cytotoxic Anthracycline Metabolites from a Recombinant Streptomyces. J Nat Prod. 2018; 16.
  35. Asadujjaman M, Mishuk A, Hossain M. Medicinal potential of Passiflora foetida L. plant extracts: biological and pharmacological activities. J Integr Med 2014,12(2):121-126.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.