The Journal of Contemporary Dental Practice

Register      Login



Volume / Issue

Online First

Related articles

VOLUME 21 , ISSUE 1 ( January, 2020 ) > List of Articles


Efficacy of Erbium, Chromium-doped Yttrium, Scandium, Gallium and Garnet Laser-activated Irrigation Compared with Passive Ultrasonic Irrigation, Conventional Irrigation, and Photodynamic Therapy against Enterococcus faecalis

Saime A Aydin, Tamer Taşdemir, Celal K Buruk, Davut Çelik

Keywords : Er,Cr:YSGG laser, Laser-activated irrigation, Passive ultrasonic irrigation, Photoactivated disinfection, Root canal disinfection

Citation Information : Aydin SA, Taşdemir T, Buruk CK, Çelik D. Efficacy of Erbium, Chromium-doped Yttrium, Scandium, Gallium and Garnet Laser-activated Irrigation Compared with Passive Ultrasonic Irrigation, Conventional Irrigation, and Photodynamic Therapy against Enterococcus faecalis. J Contemp Dent Pract 2020; 21 (1):11-16.

DOI: 10.5005/jp-journals-10024-2727

License: CC BY-NC 4.0

Published Online: 01-06-2017

Copyright Statement:  Copyright © 2020; The Author(s).


Aim: To compare the antimicrobial effects of two different irrigation solutions activated with erbium, chromium-doped yttrium, scandium, gallium and garnet (Er,Cr:YSGG) laser or an ultrasonic system and a photodynamic therapy (PDT) on Enterococcus faecalis (E. faecalis). Materials and methods: The root canals of 72 single-rooted human permanent incisors were prepared with ProTaper Universal rotary instruments and incubated with E. faecalis (ATCC 29212) for 4 weeks. Then the teeth were randomly divided into seven experimental groups with 10 specimens for canal disinfection procedures. Group I, standard needle irrigation (SNI) with 2.5% sodium hypochlorite (NaOCl); group II, SNI with 2% chlorhexidine gluconate (CHX); group III, laser-activated irrigation (LAI) by Er,Cr:YSGG of NaOCl; group IV, LAI of CHX; and group V, passive ultrasonic irrigation (PUI) of NaOCl; group VI, PUI of CHX; group VII, PDT. The remaining two teeth were used as the control group. After the disinfection procedures were completed, the root canals were filled with phosphate-buffered saline and bacterial samples were taken with sterile paper cones. The cultivation was performed on Mueller-Hinton agar (MHA) plates. The live bacteria were calculated by counting the colonies on these plaques. The statistical analysis was performed using Kruskal-Wallis H test and Miller's multiple comparison technique. Results: Both LAI and PUI of NaOCl and PUI of CHX were more successful than the PDT on root canal disinfection (p < 0.05). Conclusion: Within the limitation of the present study, the activation of NaOCl solution by Er,Cr:YSGG laser or an ultrasonic system can be useful in the elimination of the E. faecalis from the canal. The PUI of CHX also has similar results. Photodynamic therapy showed a lower performance compared to these methods. Clinical significance: The activation of the sodium hypochlorite with Er,Cr:YSGG laser or PUI may be useful for removal of the E. faecalis biofilm layer in the root canal.

  1. Sjögren U, Figdor D, Persson S, et al. Influence of infection at the time of root filling on the outcome of endodontic treatment of teeth with apical periodontitis. Int Endod J 1997;30(5):297–306. DOI: 10.1111/j.1365-2591.1997.tb00714.x.
  2. Sundqvist G, Figdor D, Persson S, et al. Microbiologic analysis of teeth with failed endodontic treatment and the outcome of conservative re-treatment. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1998;85(1):86–93. DOI: 10.1016/S1079-2104(98)90404-8.
  3. Ricucci D, Siqueira JF. Biofilms and apical periodontitis: study of prevalence and association with clinical and histopathologic findings. J Endod 2010;36(8):1277–1288. DOI: 10.1016/j.joen.2010.04.007.
  4. Vieira AR, Siqueira JF, Ricucci D, et al. Dentinal tubule infection as the cause of recurrent disease and late endodontic treatment failure: a case report. J Endod 2012;38(2):250–254. DOI: 10.1016/j.joen.2011.10.019.
  5. Siqueira JF, Rocas IN, Ricucci D, et al. Causes and management of post-treatment apical periodontitis. Br Dent J 2014;216(6):305–312. DOI: 10.1038/sj.bdj.2014.200.
  6. Nair PN, Henry S, Cano V, et al. Microbial status of apical root canal system of human mandibular first molars with primary apical periodontitis after “one-visit” endodontic treatment. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2005;99(2):231–252. DOI: 10.1016/j.tripleo.2004.10.005.
  7. Nair PN. On the causes of persistent apical periodontitis: a review. Int Endod J 2006;39(4):249–281. DOI: 10.1111/j.1365-2591.2006.01099.x.
  8. Rocas IN, Siqueira JF, Santos KR. Association of Enterococcus faecalis with different forms of periradicular diseases. J Endod 2004;30(5): 315–320. DOI: 10.1097/00004770-200405000-00004.
  9. Siqueira JF, Rocas IN. Clinical implications and microbiology of bacterial persistence after treatment procedures. J Endod 2008;34(11):1291–1301. DOI: 10.1016/j.joen.2008.07.028.
  10. Klinke T, Klimm W, Gutknecht N. Antibacterial effects of Nd:YAG laser irradiation within root canal dentin. J Clin Laser Med Surg 1997;15(1):29–31. DOI: 10.1089/clm.1997.15.29.
  11. Eldeniz AU, Ozer F, Hadimli HH, et al. Bactericidal efficacy of Er,Cr:YSGG laser irradiation against Enterococcus faecalis compared with NaOCl irrigation: an ex vivo pilot study. Int Endod J 2007;40(2):112–119. DOI: 10.1111/j.1365-2591.2006.01190.x.
  12. Fransson H, Larsson KM, Wolf E. Efficacy of lasers as an adjunct to chemo-mechanical disinfection of infected root canals: a systematic review. Int Endod J 2013;46(4):296–307. DOI: 10.1111/iej.12003.
  13. Afkhami F, Akbari S, Chiniforush N. Enterococcus faecalis elimination in root canals using silver nanoparticles, photodynamic therapy, diode laser, or laser-activated nanoparticles: an in vitro study. J Endod 2017;43(2):279–282. DOI: 10.1016/j.joen.2016.08.029.
  14. Amaral RR, Cohen S, Ferreira MVL, et al. Antimicrobial photodynamic therapy associated with long term success in endodontic treatment with separated instruments: a case report. Photodiagnosis Photodyn Ther 2019;26:15–18. DOI: 10.1016/j.pdpdt.2019.02.015.
  15. Blanken J, De Moor RJ, Meire M, et al. Laser induced explosive vapor and cavitation resulting in effective irrigation of the root canal. Part 1: a visualization study. Lasers Surg Med 2009;41(7):514–519. DOI: 10.1002/lsm.20798.
  16. De Moor RJ, Blanken J, Meire M, et al. Laser induced explosive vapor and cavitation resulting in effective irrigation of the root canal. Part 2: evaluation of the efficacy. Lasers Surg Med 2009;41(7):520–523. DOI: 10.1002/lsm.20797.
  17. Shehab N. Recovery rate of E. faecalis after Er,Cr:YSGG laser disinfection of root canals: an ex vivo study. Am J Med Biological Res 2014;2(1):12–17. DOI: 10.12691/ajmbr-2-1-3.
  18. Betancourt P, Merlos A, Sierra JM, et al. Effectiveness of low concentration of sodium hypochlorite activated by Er,Cr:YSGG laser against Enterococcus faecalis biofilm. Lasers Med Sci 2019;34(2): 247–254. DOI: 10.1007/s10103-018-2578-6.
  19. Licata ME, Albanese A, Campisi G, et al. Effectiveness of a new method of disinfecting the root canal, using Er,Cr:YSGG laser to kill Enterococcus faecalis in an infected tooth model. Lasers Med Sci 2015;30(2):707–712. DOI: 10.1007/s10103-013-1410-6.
  20. Tsamardinos I, Borboudakis G, Katsogridakis P, et al. A greedy feature selection algorithm for big data of high dimensionality. Mach Learn 2019;108(2):149–202. DOI: 10.1007/s10994-018-5748-7.
  21. Hope CK, Garton SG, Wang Q, et al. A direct comparison between extracted tooth and filter-membrane biofilm models of endodontic irrigation using Enterococcus faecalis. Arch Microbiol 2010;192(9): 775–781. DOI: 10.1007/s00203-010-0604-6.
  22. Stojicic S, Shen Y, Haapasalo M. Effect of the source of biofilm bacteria, level of biofilm maturation, and type of disinfecting agent on the susceptibility of biofilm bacteria to antibacterial agents. J Endod 2013;39(4):473–477. DOI: 10.1016/j.joen.2012.11.024.
  23. Del Carpio-Perochena AE, Bramante CM, Duarte MA, et al. Biofilm dissolution and cleaning ability of different irrigant solutions on intraorally infected dentin. J Endod 2011;37(8):1134–1138. DOI: 10.1016/j.joen.2011.04.013.
  24. Anić I, Matsumoto K. Comparison of the sealing ability of laser-softened, laterally condensed and low-temperature thermoplasticized gutta-percha. J Endod 1995;21(9):464–469. DOI: 10.1016/S0099-2399(06)81530-X.
  25. Cogulu D, Uzel A, Oncag O, et al. Detection of Enterococcus faecalis in necrotic teeth root canals by culture and polymerase chain reaction methods. Eur J Dent 2007;1(4):216–221. DOI: 10.1055/s-0039- 1698342.
  26. Kocak S, Kocak MM, Saglam BC, et al. Efficacy of three irrigation agitation techniques on bacterial elimination: a microbiologic and microscopic evaluation. Scanning 2014;36(5):512–516. DOI: 10.1002/sca.21147.
  27. Onçağ O, Hoşgör M, Hilmioğlu S, et al. Comparison of antibacterial and toxic effects of various root canal irrigants. Int Endod J 2003;36(6):423–432. DOI: 10.1046/j.1365-2591.2003.00673.x.
  28. Ercan E, Ozekinci T, Atakul F, et al. Antibacterial activity of 2% chlorhexidine gluconate and 5.25% sodium hypochlorite in infected root canal: in vivo study. J Endod 2004;30(2):84–87. DOI: 10.1097/00004770-200402000-00005.
  29. Dunavant TR, Regan JD, Glickman GN, et al. Comparative evaluation of endodontic irrigants against Enterococcus faecalis biofilms. J Endod 2006;32(6):527–531. DOI: 10.1016/j.joen.2005.09.001.
  30. Giardino L, Ambu E, Savoldi E, et al. Comparative evaluation of antimicrobial efficacy of sodium hypochlorite, MTAD, and Tetraclean against Enterococcus faecalis biofilm. J Endod 2007;33(7):852–855. DOI: 10.1016/j.joen.2007.02.012.
  31. Lima KC, Fava LR, Siqueira Jr JF. Susceptibilities of Enterococcus faecalis biofilms to some antimicrobial medications. J Endod 2001;27(10):616–619. DOI: 10.1097/00004770-200110000-00004.
  32. Williamson AE, Cardon JW, Drake DR. Antimicrobial susceptibility of monoculture biofilms of a clinical isolate of Enterococcus faecalis. J Endod 2009;35(1):95–97. DOI: 10.1016/j.joen.2008.09.004.
  33. Agrawal V, Rao MSR, Dhingra K, et al. An in viro comparison of antimicrobial efficacy of three root canal irrigants- BioPure MTAD, 2% chlorhexidine gluconate and 5.25% sodium hypochlorite as a final rinse against E. faecalis. J Contemp Dent Pract 2013;14(5):842–847. DOI: 10.5005/jp-journals-10024-1413.
  34. Kanisavaran ZM. Chlorhexidine gluconate in endodontics: an update review. Int Dent J 2008;58(5):247–257. DOI: 10.1111/j.1875-595X.2008.tb00196.x.
  35. Gu LS, Kim JR, Ling J, et al. Review of contemporary irrigant agitation techniques and devices. J Endod 2009;35(6):791–804. DOI: 10.1016/j.joen.2009.03.010.
  36. Mozo S, Llena C, Forner L. Review of ultrasonic irrigation in endodontics: increasing action of irrigating solutions. Med Oral Patol Oral Cir Bucal 2012;17(3):e512–e516. DOI: 10.4317/medoral.17621.
  37. Brito PR, Souza LC, de Oliveira JCM, et al. Comparison of the effectiveness of three irrigation techniques in reducing intracanal Enterococcus faecalis populations: an in vitro study. J Endod 2009;35(10):1422–1427. DOI: 10.1016/j.joen.2009.07.001.
  38. Bhuva B, Patel S, Wilson R, et al. The effectiveness of passive ultrasonic irrigation on intraradicular Enterococcus faecalis biofilms in extracted single-rooted human teeth. Int Endod J 2010;43(3):241–250. DOI: 10.1111/j.1365-2591.2009.01672.x.
  39. Paiva SS, Siqueira JF, Rocas IN, et al. Supplementing the antimicrobial effects of chemomechanical debridement with either passive ultrasonic irrigation or a final rinse with chlorhexidine: a clinical study. J Endod 2012;38(9):1202–1206. DOI: 10.1016/j.joen.2012.06.023.
  40. Pedulla E, Genovese C, Campagna E, et al. Decontamination efficacy of photon-initiated photoacoustic streaming (PIPS) of irrigants using low-energy laser settings: an ex vivo study. Int Endod J 2012;45(9):865–870. DOI: 10.1111/j.1365-2591.2012.02044.x.
  41. Christo JE, Zilm PS, Sullivan T, et al. Efficacy of low concentrations of sodium hypochlorite and low-powered Er,Cr:YSGG laser activated irrigation against an Enterococcus faecalis biofilm. Int Endod J 2016;49(3):279–286. DOI: 10.1111/iej.12447.
  42. Sahar-Helft S, Stabholtz A, Moshonov J, et al. Effect of Er:YAG laser-activated irrigation solution on Enterococcus faecalis biofilm in an ex-vivo root canal model. Photomed Laser Surg 2013;31(7):334–341. DOI: 10.1089/pho.2012.3445.
  43. Peters OA, Bardsley S, Fong J, et al. Disinfection of root canals with photon-initiated photoacoustic streaming. J Endod 2011;37(7): 1008–1012. DOI: 10.1016/j.joen.2011.03.016.
  44. Ng R, Singh F, Papamanou DA, et al. Endodontic photodynamic therapy ex vivo. J Endod 2011;37(2):217–222. DOI: 10.1016/j.joen.2010.10.008.
  45. Souza LC, Brito PR, de Oliveira JC, et al. Photodynamic therapy with two different photosensitizers as a supplement to instrumentation/irrigation procedures in promoting intracanal reduction of Enterococcus faecalis. J Endod 2010;36(2):292–296. DOI: 10.1016/j.joen.2009.09.041.
  46. Tennert C, Feldmann K, Haamann E, et al. Effect of photodynamic therapy [PDT] on Enterococcus faecalis biofilm in experimental primary and secondary endodontic infections. BMC Oral Health 2014;14:132. DOI: 10.1186/1472-6831-14-132.
  47. Wang Y, Huang X. Comparative antibacterial efficacy of photodynamic therapy and ultrasonic irrigation against Enterococcus faecalis in vitro. Photochem Photobiol 2014;90(5):1084–1088. DOI: 10.1111/php.12293.
  48. Meire MA, De Prijck K, Coenye T, et al. Effectiveness of different laser systems to kill Enterococcus faecalis in aqueous suspension and in an infected tooth model. Int Endod J 2009;42(4):351–359. DOI: 10.1111/j.1365-2591.2008.01532.x.
  49. Upadya MH, Kishen A. Influence of bacterial growth modes on the susceptibility to light-activated disinfection. Int Endod J 2010;43(11):978–987. DOI: 10.1111/j.1365-2591.2010.01717.x.
  50. Shrestha A, Kishen A. The effect of tissue inhibitors on the antibacterial activity of chitosan nanoparticles and photodynamic therapy. J Endod 2012;38(9):1275–1278. DOI: 10.1016/j.joen.2012. 05.006.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.