The Journal of Contemporary Dental Practice

Register      Login

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue

Online First

Archive
Related articles

VOLUME 21 , ISSUE 3 ( March, 2020 ) > List of Articles

ORIGINAL RESEARCH

Influence of Temperature on the Cyclic Fatigue Resistance of Reciproc Blue Instruments

Thalita M Vieira, Nayane CC Alves, Silmara de Andrade Silva, Andressa C de Almeida, Christianne TV Telles, Diana S Albuquerque

Keywords : Body temperature, Cyclic fatigue, Nickel titanium, Reciproc blue

Citation Information : Vieira TM, Alves NC, Silva SD, de Almeida AC, Telles CT, Albuquerque DS. Influence of Temperature on the Cyclic Fatigue Resistance of Reciproc Blue Instruments. J Contemp Dent Pract 2020; 21 (3):277-279.

DOI: 10.5005/jp-journals-10024-2781

License: CC BY-NC 4.0

Published Online: 01-04-2019

Copyright Statement:  Copyright © 2020; The Author(s).


Abstract

Aim: To evaluate the cyclic fatigue resistance of Reciproc blue (RB) 40/0.06 instruments tested at room temperature (20° ± 0.5°C) and at body temperature (37° ± 0.5°C) in a simulated stainless steel canal. Materials and methods: Twenty-four new RB 40/0.06 instruments were randomly divided into two groups (n = 12) according to the temperature used. Dynamic fatigue testing was performed using an artificial stainless steel canal with a 60° curvature angle and a 5-mm radius of curvature. The temperature was controlled throughout the experiment with an underwater thermometer and a thermostat. The data were analyzed descriptively using the IBM SPSS 23.0 program, considering p < 0.05. Results: The time to fracture of the RB instruments differed significantly between the two temperatures (1083.82 seconds at 20°C and 403.80 seconds at 37°C). No significant differences were found in fragment size. Conclusion: An increase in temperature reduces the cyclic fatigue resistance of RB 40/0.06 instruments. The results of the study suggest that an intracanal cooling system can be favorable to the fracture resistance of the tested instruments. Clinical significance: A cooling system of the root canal system is important in endodontic as it favors the cyclic fatigue resistance of Ni-Ti instruments.


HTML PDF Share
  1. Pruett JP, Clement DJ, Carnes DL. Cyclic fatigue testing of nickel-titanium endodontic instruments. J Endod 1997;23(2):77–85. DOI: 10.1016/S0099-2399(97)80250-6.
  2. Shen Y, Zhou HM, Zheng YF, et al. Current challenges and concepts of the thermomechanical treatment of nickel-titanium instruments. J Endod 2013;39(2):163–172. DOI: 10.1016/j.joen.2012.11.005.
  3. Pedullà E, Lo Savio F, Boninelli S, et al. Influence of cyclic torsional preloading on cyclic fatigue resistance of nickel–titanium instruments. Int Endod J 2015;48(11):1043–1050. DOI: 10.1111/iej.12400.
  4. Otsuka K, Ren X. Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci 2005;50(5):511–678. DOI: 10.1016/j.pmatsci.2004.10.001.
  5. Pereira ES, Gomes RO, Leroy AM, et al. Mechanical behavior of M-Wire and conventional NiTi wire used to manufacture rotary endodontic instruments. Dent Mater 2013;29(12):e318–e324. DOI: 10.1016/j.dental.2013.10.004.
  6. Plotino G, Grande NM, Cotti E, et al. Blue treatment enhances cyclic fatigue resistance of vortex nickel-titanium rotary files. J Endod 2014;40(9):1451–1453. DOI: 10.1016/j.joen.2014.02.020.
  7. Brantley WA. Orthodontic wires. In: Brantley WA, Eliades T, ed. Orthodontic Materials: Scientific and Clinical Aspects. Thieme S; 2000. pp. 78–100.
  8. Jamleh A, Kobayashi C, Yahata Y, et al. Deflecting load of nickel titanium rotary instruments during cyclic fatigue. Dent Mater J 2012;31(3):389–393. DOI: 10.4012/dmj.2011-233.
  9. Dosanjh A, Paurazas S, Askar M. The effect of temperature on cyclic fatigue of nickel-titanium rotary endodontic instruments. J Endod 2017;43(5):823–826. DOI: 10.1016/j.joen.2016.12.026.
  10. Arias A, Macorra JC, Govindjee S, et al. Correlation between temperature-dependent fatigue resistance and differential scanning calorimetry analysis for 2 contemporary rotary instruments. J Endod 2018;44(4):630–634. DOI: 10.1016/j.joen.2017.11.022.
  11. de Hemptinne F, Slaus G, Vandendael M, et al. In vivo intracanal temperature evolution during endodontic treatment after the injection of room temperature or preheated sodium hypochlorite. J Endod 2015;41(7):1112–1115. DOI: 10.1016/j.joen.2015.02.011.
  12. Pedullà E, La Rosa GR, Boninelli S, et al. Influence of different angles of file access on cyclic fatigue resistance of reciproc and reciproc blue instruments. J Endod 2018;44(12):1849–1855. DOI: 10.1016/j.joen.2018.08.012.
  13. Yared G. Reciproc blue: the new generation of reciprocation. Giornale italiano di endodonzia 2017;31(2):96–101. DOI: 10.4081/j.gien.2017.26.
  14. Kaval ME, Capar ID, Ertas H, et al. Comparative evaluation of cyclic fatigue resistance of four different nickel-titanium rotary files with different cross-sectional designs and alloy properties. Clin Oral Investig 2017;21(5):1527–1530. DOI: 10.1007/s00784-016-1917-x.
  15. de Menezes SE, Batista SM, de Magalhães DF. Cyclic fatigue resistance of mtwo rotary instruments with two different instrumentation techniques. Iran Endod J 2018;13(1):114–119.
  16. McGuigan MB, Louca C, Duncan HF. Endodontic instrument fracture: causes and prevention. Br Dent J 2013;214(7):341–348. DOI: 10.1038/sj.bdj.2013.324.
  17. De-Deus G, Silva EJ, Vieira VT, et al. Blue thermomechanical treatment optimizes fatigue resistance and flexibility of the reciproc files. J Endod 2017;43(3):462–466. DOI: 10.1016/j.joen.2016.10.039.
  18. Gao Y, Gutmann JL, Wilkinson K, et al. Evaluation of the impact of raw materials on the fatigue and mechanical properties of ProFile Vortex rotary instruments. J Endod 2012;38(3):398–401. DOI: 10.1016/j.joen.2011.11.004.
  19. Keskin C, Inan U, Demiral M, et al. Cyclic fatigue resistance of Reciproc Blue, Reciproc, and WaveOne Gold reciprocating instruments. J Endod 2017;43(8):1360–1363. DOI: 10.1016/j.joen.2017.03.036.
  20. Topçuoğlu HS, Topçuoğlu G. Cyclic fatigue resistance of Reciproc Blue and Reciproc files in an s-shaped canal. J Endod 2017;43(10): 1679–1682. DOI: 10.1016/j.joen.2017.04.009.
  21. Plotino G, Grande NM, Testarelli L, et al. Cyclic fatigue of reciproc and reciproc blue nickel-titanium reciprocating files at different environmental temperatures. J Endod 2018;44(10):1549–1552. DOI: 10.1016/j.joen.2018.06.006.
  22. Klymus ME, Alcalde MP, Vivan RR, et al. Effect of temperature on the cyclic fatigue resistance of thermally treated reciprocating instruments. Clin Oral Investig 2018;5:1–6.
  23. Inan U, Keskin C, Yilmaz ÖS, et al. Cyclic fatigue of Reciproc Blue and Reciproc instruments exposed to intracanal temperature in simulated severe apical curvature. Clin Oral Investig 2018. 1–6.
  24. Prados-Privado M, Rojo R, Ivorra C, et al. Finite element analysis comparing WaveOne, WaveOne Gold, Reciproc and Reciproc Blue responses with bending and torsion tests. J Mech Behav Biomed Mater 2019;90:165–172. DOI: 10.1016/j.jmbbm.2018.10.016.
  25. de Vasconcelos RA, Murphy S, Carvalho CA, et al. Evidence for reduced fatigue resistance of contemporary rotary instruments exposed to body temperature. J Endod 2016;42(5):782–787. DOI: 10.1016/j.joen.2016.01.025.
  26. Grande NM, Plotino G, Silla E, et al. Environmental temperature drastically affects flexural fatigue resistance of nickel-titanium rotary files. J Endod 2017;43(7):1157–1160. DOI: 10.1016/j.joen.2017.01.040.
  27. Shen Y, Huang X, Wang Z, et al. Low environmental temperature influences the fatigue resistance of nickel-titanium files. J Endod 2018;44(4):626–629. DOI: 10.1016/j.joen.2017.11.004.
  28. Arias A, Hejlawy S, Murphy S, et al. Variable impact by ambient temperature on fatigue resistance of heat-treated nickel titanium instruments. Clin Oral Investig 2019;23(3):1101–1108. DOI: 10.1007/s00784-018-2543-6.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.